【科普】边缘计算和云计算及边缘AI应用

边缘计算和云计算是两种不同的计算模型,它们在处理数据和执行计算任务方面有着各自的特点和优势。

云计算

  1. 集中式处理:云计算依赖于远程服务器来存储、管理和处理数据,而不是本地服务器或个人计算机。
  2. 可扩展性:用户可以根据需要动态扩展计算资源,如存储空间和处理能力。
  3. 成本效益:用户只需为使用的资源付费,无需投资昂贵的硬件。
  4. 维护和更新:服务提供商负责数据中心的维护和软件更新。
  5. 访问性:用户可以通过互联网从任何地方访问云服务。
  6. 安全性:云服务提供商通常提供高级的安全措施来保护数据。

边缘计算

  1. 分布式处理:边缘计算将数据处理和分析更接近数据源的地方进行,通常是在网络的边缘,比如在物联网(IoT)设备或本地服务器上。
  2. 低延迟:由于数据处理更接近数据源,因此可以减少数据传输的延迟。
  3. 带宽节省:通过在边缘处理数据,可以减少需要传输到云端的数据量,从而节省带宽。
  4. 实时处理:适合需要快速响应的应用,如自动驾驶汽车和工业自动化。
  5. 离线能力:即使在网络连接不稳定或不可用的情况下,边缘设备也可以继续工作。
  6. 数据隐私:通过在本地处理数据,可以减少数据泄露的风险。

总的来说,云计算适合处理大规模数据和需要集中管理的场景,而边缘计算则适合需要快速响应和处理大量实时数据的应用。在实际应用中,边缘计算和云计算往往可以结合使用,以发挥各自的优势。例如,边缘设备可以处理实时数据并做出快速决策,而将非实时数据发送到云端进行长期存储和深入分析。这种结合使用的方式有时被称为"雾计算"。

还得是NV啊看看这个就很清晰了。

什么是边缘 AI,其运作方式是什么? | NVIDIA 英伟达博客

相关推荐
艾莉丝努力练剑1 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追2 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子5 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
初恋叫萱萱8 分钟前
CANN 生态安全加固指南:构建可信、鲁棒、可审计的边缘 AI 系统
人工智能·安全
机器视觉的发动机14 分钟前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉
铁蛋AI编程实战17 分钟前
通义千问 3.5 Turbo GGUF 量化版本地部署教程:4G 显存即可运行,数据永不泄露
java·人工智能·python
HyperAI超神经21 分钟前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
JoySSLLian35 分钟前
手把手教你安装免费SSL证书(附宝塔/Nginx/Apache配置教程)
网络·人工智能·网络协议·tcp/ip·nginx·apache·ssl
BestSongC36 分钟前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
模型时代42 分钟前
Anthropic明确拒绝在Claude中加入广告功能
人工智能·microsoft