[机器学习]集成学习

1 集成学习

  • 强强联合、弱弱变强
  • Bagging(平权投票):随机森林
  • Boosting(加权投票):Adaboost、GBDT、XGBoost、LightGBM

2 随机森林

3 Adaboost

放大错误数据,缩小正确数据

相关推荐
难受啊马飞2.02 分钟前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队3 分钟前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享6 分钟前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳025 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
一尘之中39 分钟前
全素山药开发指南:从防痒处理到高可用食谱架构
人工智能
加油吧zkf1 小时前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf1 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
峙峙峙1 小时前
线性代数--AI数学基础复习
人工智能·线性代数
weiwuxian1 小时前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee1 小时前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构