矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
jndingxin1 天前
OpenCV 图形API(5)API参考:数学运算用于执行图像或矩阵加法操作的函数add()
opencv·webpack·矩阵
y5236482 天前
PowerBI 矩阵,列标题自定义排序
线性代数·矩阵·powerbi
梭七y2 天前
【力扣hot100题】(017)矩阵置零
算法·leetcode·矩阵
进击的jerk3 天前
力扣.旋转矩阵Ⅱ
算法·leetcode·矩阵
幻风_huanfeng3 天前
人工智能之数学基础:矩阵的相似变换的本质是什么?
人工智能·深度学习·线性代数·机器学习·矩阵·相似变换
jllws13 天前
数据类设计_图片类设计_矩阵图类型和像素图类型设计的补充
前端·c++·矩阵·数据类设计
Source.Liu3 天前
【学Rust写CAD】18 定点数2D仿射变换矩阵结构体(MatrixFixedPoint结构别名)
矩阵·rust·cad
进击的jerk3 天前
力扣.旋转矩阵
算法·leetcode·矩阵
Yang-Never3 天前
Open GL ES ->模型矩阵、视图矩阵、投影矩阵等变换矩阵数学推导以及方法接口说明
android·矩阵·kotlin·android studio
passxgx3 天前
7.3 主成分分析(PCA)
线性代数