矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
盛寒11 小时前
向量空间 线性代数
python·线性代数·机器学习
chao_78914 小时前
二分查找篇——寻找旋转排序数组中的最小值【LeetCode】
python·线性代数·算法·leetcode·矩阵
】余185381628001 天前
矩阵系统源码搭建与定制化开发,支持OEM
线性代数·矩阵
YuTaoShao2 天前
【LeetCode 热题 100】73. 矩阵置零——(解法一)空间复杂度 O(M + N)
算法·leetcode·矩阵
Dark__Monarch3 天前
二元一次方程
线性代数
Kaltistss3 天前
240.搜索二维矩阵Ⅱ
线性代数·算法·矩阵
说私域3 天前
视频号账号矩阵运营中定制开发开源 AI 智能名片 S2B2C 商城小程序的赋能研究
人工智能·矩阵·开源
张晓~183399481214 天前
数字人源码部署流程分享--- PC+小程序融合方案
javascript·小程序·矩阵·aigc·文心一言·html5
峙峙峙4 天前
线性代数--AI数学基础复习
人工智能·线性代数
我爱C编程5 天前
基于拓扑结构检测的LDPC稀疏校验矩阵高阶环检测算法matlab仿真
算法·matlab·矩阵·ldpc·环检测