矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
老歌老听老掉牙16 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
呵呵哒( ̄▽ ̄)"19 小时前
线性代数:公共解
线性代数
呵呵哒( ̄▽ ̄)"20 小时前
线性代数:同解(1)
python·线性代数·机器学习
SweetCode20 小时前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc21 小时前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
SylviaW082 天前
python-leetcode 63.搜索二维矩阵
python·leetcode·矩阵
小卡皮巴拉2 天前
【力扣刷题实战】矩阵区域和
开发语言·c++·算法·leetcode·前缀和·矩阵
闯闯爱编程2 天前
数组与特殊压缩矩阵
数据结构·算法·矩阵
ElseWhereR2 天前
矩阵对角线元素的和 - 简单
线性代数·矩阵
飞川撸码2 天前
【LeetCode 热题100】240:搜索二维矩阵 II(详细解析)(Go语言版)
leetcode·矩阵·golang