矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
不解风水11 小时前
【教程笔记】KalmanFilter
笔记·学习·算法·矩阵·ekf
CreasyChan16 小时前
unity矩阵与变换 - “空间转换的魔术”
unity·矩阵·c#·游戏引擎
Leweslyh18 小时前
线性时不变系统传递函数矩阵的状态空间实现理论及其多重性机理研究
线性代数·矩阵
曹文杰15190301121 天前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
iAkuya1 天前
(leetcode)力扣100 19螺旋矩阵(方向数组/边界把控)
算法·leetcode·矩阵
闻缺陷则喜何志丹2 天前
【计算几何】仿射变换与齐次矩阵
c++·数学·算法·矩阵·计算几何
闻缺陷则喜何志丹2 天前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
iAkuya3 天前
(leetcode)力扣100 18矩阵置零(哈希)
leetcode·矩阵·哈希算法
点云侠3 天前
粒子群优化算法求解三维变换矩阵的数学推导
线性代数·算法·矩阵
c#上位机3 天前
halcon计算仿射变换矩阵的逆矩阵
计算机视觉·矩阵·c#