矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
狂野有理38 分钟前
线性代数【第五章:特征值与特征向量】
线性代数
oscar9993 小时前
线性代数第一章 行列式
线性代数·行列式
在路上看风景3 小时前
2.3 矩阵的零空间
线性代数·矩阵
狂野有理3 小时前
线性代数【第六章:正交性与最小二乘法】
线性代数
却话巴山夜雨时i4 小时前
74. 搜索二维矩阵【中等】
数据结构·算法·矩阵
simon_skywalker6 小时前
线性代数及其应用习题答案(中文版)第一章 线性代数中的线性方程组 1.4 矩阵方程Ax=b(1)
线性代数·机器学习·矩阵
oscar9997 小时前
线性代数 第二章 矩阵
线性代数·矩阵
懒麻蛇17 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
ChoSeitaku1 天前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
西西弗Sisyphus1 天前
矩阵的左乘和右乘有什么区别
线性代数·矩阵