矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
醒过来摸鱼6 小时前
9.12 sinc插值
python·线性代数·算法·numpy
虹科测试测量7 小时前
德思特干货 | 单通道、多通道衰减器与衰减矩阵:如何选择合适的衰减方案
服务器·测试工具·算法·矩阵
ada7_12 小时前
LeetCode(python)——73.矩阵置零
python·算法·leetcode·矩阵
羑悻的小杀马特13 小时前
远程也能追热点:NewsNow精准筛选热榜,CPolar让信息获取不受地点限制
矩阵·cpolar·热点数据·newsnow
醒过来摸鱼1 天前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
醒过来摸鱼1 天前
9.8 贝塞尔曲线
线性代数·算法·numpy
xier_ran2 天前
Python 切片(Slicing)完全指南:从基础到多维矩阵
开发语言·python·矩阵
lijil1682 天前
Hypermesh估算发动机缸体质量矩阵
线性代数·矩阵
FanXing_zl2 天前
快速掌握线性代数:核心概念与深度解析
线性代数·算法·机器学习
点云SLAM2 天前
四元数 (Quaternion)微分-四元数导数的矩阵表示推导(8)
线性代数·算法·计算机视觉·矩阵·机器人·slam·四元数