矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
Dream it possible!3 小时前
LeetCode 面试经典 150_二分查找_搜索二维矩阵(112_74_C++_中等)
leetcode·面试·矩阵
AI科技星3 小时前
电磁耦合常数Z‘的第一性原理推导与严格验证:张祥前统一场论的几何基石
服务器·人工智能·线性代数·算法·矩阵
AI科技星4 小时前
电场起源的几何革命:变化的引力场产生电场方程的第一性原理推导、验证与统一性意义
开发语言·人工智能·线性代数·算法·机器学习·数学建模
ComputerInBook1 天前
求解矩阵特征值和特征向量
矩阵·行列式·特征值·特征向量
18538162800云罗1 天前
2026 最新矩阵剪辑系统搭建教程(附完整可运行源码
线性代数·矩阵·音视频
geffen16881 天前
GF-AUDIO9696音频矩阵核心特性
线性代数·矩阵·音视频
我要学好英语1 天前
矩阵论笔记整理
笔记·线性代数·矩阵
AI科技星1 天前
引力场与磁场的几何统一:磁矢势方程的第一性原理推导、验证与诠释
数据结构·人工智能·经验分享·线性代数·算法·计算机视觉·概率论
byzh_rc2 天前
[数字信号处理-入门] 频域分析
线性代数·信号处理
byzh_rc2 天前
[数字信号处理-入门] 复频域分析
线性代数·信号处理