矩阵杂谈——矩阵的秩

矩阵的秩,即为矩阵的主元个数,它决定着矩阵关于 A x = b Ax=b Ax=b这个方程组到底有多少解。

下面便来具体分析这句话:

r :矩阵的秩 A : m × n 大小的矩阵 r:矩阵的秩\\A:m \times n大小的矩阵 r:矩阵的秩A:m×n大小的矩阵


1. r = m = n r= m=n r=m=n

此时,矩阵消元过后可以简化表示为 [ I ] [ I ] [I],此时必定有一个解。

可以理解为 r r r个 r r r元的线性不相关方程必然有且仅有一个解。

也可以理解为给你了一个线性不相关的基底,必然能以唯一形式表达出空间上的一个向量。

2. r = n < m r=n<m r=n<m

此时的矩阵消元后,可以简化表示为 [ I 0 ] \left[ \begin{matrix} I\\ 0 \end{matrix} \right] [I0]

当下面几行的参数能满足 0 = b n 0=b_n 0=bn时,情况便和第一种一样,有且仅有一个解。不满足的话就是无解。

3. r = m < n r=m<n r=m<n

此时的矩阵消元后,可以简化表示为 [ I F ] \left[ \begin{matrix} {I} &{F} \end{matrix} \right] [IF]

由于自由列的存在,给解了不确定性,所以这样的矩阵对应的方程总是有解且有无数个解的。

4. r < m , r < n r<m,r<n r<m,r<n

这样的矩阵消元后可表示为: [ I F 0 0 ] \left[ \begin{matrix} {I} &{F} \\ {0}& {0} \end{matrix} \right] [I0F0]

情况是综合2与3,不难得到,可能有0个解或者无数个解。

相关推荐
Olafur_zbj1 小时前
【AI】矩阵、向量与乘法
人工智能·线性代数·矩阵
啦啦啦在冲冲冲10 小时前
lora矩阵的初始化为啥B矩阵为0呢,为啥不是A呢
深度学习·机器学习·矩阵
sensen_kiss10 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.8 主成分分析(PCA)与无监督学习
神经网络·学习·线性代数·机器学习
西西弗Sisyphus1 天前
线性代数 - 矩阵的等价标准形
线性代数·矩阵·等价标准形
前端小L1 天前
图论专题(十七):从“判定”到“构造”——生成一份完美的「课程表 II」
算法·矩阵·深度优先·图论·宽度优先
冰西瓜6002 天前
模与内积(五)矩阵分析与应用 国科大
线性代数·算法·矩阵
AIminminHu2 天前
底层视觉及图像增强-项目实践理论补充(十六-0-(19):HDR多帧对齐中的关键帧对齐与变换矩阵插值技术):从奥运大屏,到手机小屏,快来挖一挖里面都有什么
线性代数·矩阵·多帧对齐·关键帧对齐·变换矩阵插值
西西弗Sisyphus3 天前
线性代数 - 叉积的分量形式与矩阵形式
线性代数·矩阵·行列式·determinant
豆沙粽子好吃嘛!4 天前
从LQR到iLQR的简明易懂过程(一)
线性代数