pytorch + d2l环境配置

文章目录


前言

一直想写一篇 pytorch + d2l的深度学习环境配置。但一直都不是很顺利,配置过很多次,都会遇到一些各种依赖项的兼容性问题。但这个是没有办法的,各种开源包都在不断维护过程中,版本迭代中出现兼容性问题不可避免。

下面我就给出我摸索出的一套配置:GPU版(CPU版倒是没有那么多问题)

cuda11.8 + cudnn11.x(如果官网找不到11.8,就找11.x, 根据经验不跨大版本问题不大)

一、安装软件

上英伟达官网下载cuda和cudnn安装。

cuda安装直接默认安装在C盘即可,这种和系统相关的默认是最好,不然容易出问题

cudnn 直接粘贴复制即可。

上面两步具体操作,参考视频安装教程

安装好后,一定要在cmd里面看看是否成功。参考视频中也有cmd中验证,照着来即可。

【注】:上述教程看安装cuda和cudnn的部分即可。其余的还是按我下面的教程来回比较好。

二、配置具体环境

  • step1: conda create 一个干净的 3.9以上的python环境并切换过去
  • step2:
    • pip install D:\Python_\torch安装包\torch-2.1.0+cu118-cp39-cp39-win_amd64.whl torchvision==0.16.0 torchaudio=2.1.0 --index-url https://download.pytorch.org/whl/cu118
      这个里面的torch安装包我直接下到了本地(直接官网那个pip网速太感人了),其余几个依赖,上面那几个版本是可以兼容的
  • step3: pip install jupyter d2l

全部跑完没有出现红色或者黄色警告什么版本不兼容问题就大工告成了。

验证一下可不可以移动到cuda上运算:参考视频

相关推荐
PD我是你的真爱粉10 分钟前
Redis持久化、内存管理、慢查询与发布订阅
redis·python·mybatis
查无此人byebye26 分钟前
实战DDPM扩散模型:MNIST手写数字生成+FID分数计算(完整可运行版)
人工智能·pytorch·python·深度学习·音视频
好家伙VCC32 分钟前
# 光计算驱动的编程范式革新:用Python实现光子神经网络模拟器在传统电子计算架构逼近物理极限的今天,**光计算**正
java·开发语言·python·神经网络
Dxy123931021636 分钟前
Python使用正则提取字符串中的数字
python
花果山总钻风1 小时前
SQLAlchemy各种排序示例
后端·python·中间件
大黄说说1 小时前
Python 实战指南:一键批量旋转 PDF 页面方向
开发语言·python·pdf
shangyingying_12 小时前
图像质量评价(IQA)
人工智能·python·神经网络
OPEN-Source2 小时前
大模型 Agent 实战:多 Agent 太贵太慢?一套系统性的性能与成本优化方案
人工智能·python·agent·rag·deepseek
一阵寒风2 小时前
ComfyUI本地部署指南
开发语言·人工智能·python
高洁012 小时前
大模型架构演进:从Transformer到MoE
python·深度学习·机器学习·数据挖掘·知识图谱