微博舆情数据分析(一)pandas + matplotlib 作图

这篇文章使用的数据基于博文 微博爬虫

主要涉及的技术是 pandas + matplotlib ,是常见的python的数据分析作图方法

1 统计代码生成excel

利用pandas生成excel数据

python 复制代码
def init_data():
    df = pd.read_sql_query("SELECT * FROM tb_weibo", cnn)
    print('初始化数据完毕..')
    # 分割 topics 字段
    df['topics'] = df['topics'].str.split(',')

    # 扁平化 topics 字段
    df_exploded = df.explode('topics')

    # 统计 attitudes_count、comments_count、reposts_count 的和值
    summary_df = df_exploded.groupby('topics').agg({
        'attitudes_count': 'sum',
        'comments_count': 'sum',
        'reposts_count': 'sum',
        'keywords': 'first',  # 展示对应的 keywords 字段
        'label': 'count'  # 统计对应行数,取名为 total
    }).reset_index().rename(columns={'label': 'total'})
    # 统计负面文章的数量(label 等于 '消极' 的数量)
    negative_count_df = df_exploded[df_exploded['label'] == '消极'].groupby('topics').size().reset_index(
        name='native_count')
    # 统计用户的个数(去重)
    user_count_df = df_exploded.groupby('topics')['user_id'].nunique().reset_index(name='user_count')
    # 合并所有统计结果
    result_df = summary_df.merge(negative_count_df, on='topics', how='left').merge(user_count_df, on='topics',
                                                                                   how='left')
    # 替换 NaN 值为 0(如果有的话)
    result_df.fillna(0, inplace=True)
    # 根据 total 进行倒序排列
    result_df = result_df.sort_values(by=['total'], ascending=False)
    # 将结果保存为 Excel 文件
    result_df.to_excel('topic.xlsx', index=False)
    print('数据处理完毕,生成 topic.xlsx 文件')

2 生成分析图

利用matplotlib生成柱状图和饼图

python 复制代码
# 读取处理后的数据
    def analyze_chart1():
    # 读取处理后的数据
    result_df = pd.read_excel('topic.xlsx')

    # 确保 topics 列是字符串类型并处理 NaN 值
    result_df['topics'] = result_df['topics'].astype(str).fillna('未知主题')

    # 取前20个主题
    top_20_df = result_df.head(20)

    # 设置中文字体,确保能够显示中文字符
    matplotlib.rcParams['font.family'] = 'SimHei'  # 使用黑体
    matplotlib.rcParams['axes.unicode_minus'] = False  # 解决负号 '-' 显示为方块的问题

    # 1. 柱状图:分析各个关键词的文章条数 total 列
    plt.figure(figsize=(12, 6))
    plt.bar(top_20_df['topics'], top_20_df['total'], color='skyblue')
    plt.xlabel('主题')
    plt.ylabel('文章条数')
    plt.title('各个关键词的文章条数(前20)')
    plt.xticks(rotation=45, ha='right')  # 旋转 x 轴标签
    plt.tight_layout()
    plt.savefig('bar_chart_total.png')  # 保存图表
    plt.show()  # 显示图表

    # 2. 饼图:分析负面舆情 native_count 和 total
    sizes = [result_df['native_count'].sum(), result_df['total'].sum() - result_df['native_count'].sum()]
    labels = ['负面舆情', '其他舆情']
    plt.figure(figsize=(8, 8))
    plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140, colors=['tomato', 'lightgreen'])
    plt.title('负面舆情与其他舆情占比')
    plt.axis('equal')  # 使饼图为圆形
    plt.savefig('pie_chart_native_count.png')  # 保存图表
    plt.show()  # 显示图表

3 执行结果

执行代码:

python 复制代码
if __name__ == '__main__':
    init_data()
    analyze_chart1()

生成的excel:

生成的分析图:

柱状图,我们使用到了蓝色的柱形,表示每个主题下的微博文章的数量的排列,只列出了前20的。

饼图,我们分析了负面的微博文章的比例,显示为红色,其他舆情(积极和中性)占97.8%。

4 小结

以上图形分析的是整体的数据情况,更多的时候我们希望分析的是某一个话题或者某一个关键词的舆情状况,所以需要添加查询参数,下一篇文章我们拓展更多的图形,并且添加关键词参数。

相关推荐
浏览器爱好者11 小时前
如何在Python中进行数据分析?
开发语言·python·数据分析
希艾席蒂恩18 小时前
专业数据分析不止于Tableau,四款小众报表工具解析
大数据·信息可视化·数据分析·数据可视化·报表工具
spssau18 小时前
2025美赛倒计时,数学建模五类模型40+常用算法及算法手册汇总
算法·数学建模·数据分析·spssau
JZC_xiaozhong19 小时前
低空经济中的数据孤岛难题,KPaaS如何破局?
大数据·运维·数据仓库·安全·ci/cd·数据分析·数据库管理员
木与长清20 小时前
利用MetaNeighbor验证重复性和跨物种分群
矩阵·数据分析·r语言
boonya20 小时前
StarRocks强大的实时数据分析
数据挖掘·数据分析
史嘉庆1 天前
Pandas 数据分析(二)【股票数据】
大数据·数据分析·pandas
唯余木叶下弦声1 天前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark
叫我:松哥1 天前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
狮歌~资深攻城狮1 天前
TiDB出现后,大数据技术的未来方向
数据库·数据仓库·分布式·数据分析·tidb