PyTorch nn.Conv2d 空洞卷积

torch.nn.Conv2d() 中 dilation 参数控制卷积核的间隔

dilation controls the spacing between the kernel points

  • 当 dilation=1 时, 表示卷积核没有额外的空白间距, 也就是标准卷积
  • 当 dilation>1 时, 表示空洞卷积(dilated convolution)

动画演示:

手动计算

以 2*2 的卷积核和 dilation=2 为例, 等效卷积核的大小为:

左上角区域卷积: 1 * 2 + 3 * 0 + 3 * 1 + 1 * 3 = 8, 卷积核中的空白间隔不参与运算, 当然也可以将其置为 0, 等效为 3 * 3 的卷积运算

结果:

使用 PyTorch 计算

python 复制代码
import torch
from torch import nn

data = [
    [1, 2, 3, 0],
    [0, 1, 2, 3],
    [3, 0, 1, 2],
    [2, 3, 0, 1]
]
# 单通道 4*4 图片
# minibatch=1
inp = torch.tensor(data).reshape(1, 1, 4, 4).to(torch.float32)

conv = nn.Conv2d(1, 1, kernel_size=2, dilation=2, bias=False)
conv.weight.data = torch.tensor(
    [[2, 0], [1, 3]]
).reshape(1, 1, 2, 2).to(torch.float32)

oup = conv(inp)
print(oup)

输出

python 复制代码
tensor([[[[ 8., 10.],
          [ 2.,  8.]]]], grad_fn=<ConvolutionBackward0>)

空洞卷积可以扩大感受野, 2*2 的卷积核, dilation 参数设为 2, 可以提取特征图中 3*3 的内容, 却只有 2*2 的卷积运算量

空洞卷积会丢失局部信息

相关推荐
Duang007_44 分钟前
拆解 Transformer 的灵魂:全景解析 Attention 家族 (Self, Cross, Masked & GQA)
人工智能·深度学习·transformer
xixixi777771 小时前
对 两种不同AI范式——Transformer 和 LSTM 进行解剖和对比
人工智能·深度学习·大模型·lstm·transformer·智能·前沿
子午1 小时前
【2026原创】水稻植物病害识别系统~Python+深度学习+人工智能+resnet50算法+TensorFlow+图像识别
人工智能·python·深度学习
AI即插即用1 小时前
超分辨率重建(论文精读) | CVPR 2025 LSRNA:利用隐空间超分与噪声对齐,打破扩散模型生成 4K 图像的效率瓶颈
图像处理·人工智能·深度学习·计算机视觉·视觉检测·超分辨率重建
海天一色y2 小时前
基于CNN实现Mnist手写数字识别
人工智能·深度学习·计算机视觉
抠头专注python环境配置2 小时前
2026终极诊断指南:解决Windows PyTorch GPU安装失败,从迷茫到确定
人工智能·pytorch·windows·深度学习·gpu·环境配置·cuda
CoovallyAIHub3 小时前
英伟达CES 2026炸场:没有新显卡,却掏出了让全球AI公司彻夜难眠的“算力核弹”
深度学习·算法·计算机视觉
智算菩萨3 小时前
2026最新视频压缩技术全景概述:AV2临近定稿、VVC加速落地、神经网络编码正在改写带宽成本
人工智能·深度学习·神经网络
CoovallyAIHub3 小时前
如何用10%的标注数据,达到可媲美全监督模型的性能?AAAI 2026论文揭秘BCSI三大创新设计
深度学习·算法·计算机视觉
duyinbi75173 小时前
【深度学习】基于YOLO11的数字仪表识别与分类实现_HAFB_1
人工智能·深度学习·分类