PyTorch nn.Conv2d 空洞卷积

torch.nn.Conv2d() 中 dilation 参数控制卷积核的间隔

dilation controls the spacing between the kernel points

  • 当 dilation=1 时, 表示卷积核没有额外的空白间距, 也就是标准卷积
  • 当 dilation>1 时, 表示空洞卷积(dilated convolution)

动画演示:

手动计算

以 2*2 的卷积核和 dilation=2 为例, 等效卷积核的大小为:

左上角区域卷积: 1 * 2 + 3 * 0 + 3 * 1 + 1 * 3 = 8, 卷积核中的空白间隔不参与运算, 当然也可以将其置为 0, 等效为 3 * 3 的卷积运算

结果:

使用 PyTorch 计算

python 复制代码
import torch
from torch import nn

data = [
    [1, 2, 3, 0],
    [0, 1, 2, 3],
    [3, 0, 1, 2],
    [2, 3, 0, 1]
]
# 单通道 4*4 图片
# minibatch=1
inp = torch.tensor(data).reshape(1, 1, 4, 4).to(torch.float32)

conv = nn.Conv2d(1, 1, kernel_size=2, dilation=2, bias=False)
conv.weight.data = torch.tensor(
    [[2, 0], [1, 3]]
).reshape(1, 1, 2, 2).to(torch.float32)

oup = conv(inp)
print(oup)

输出

python 复制代码
tensor([[[[ 8., 10.],
          [ 2.,  8.]]]], grad_fn=<ConvolutionBackward0>)

空洞卷积可以扩大感受野, 2*2 的卷积核, dilation 参数设为 2, 可以提取特征图中 3*3 的内容, 却只有 2*2 的卷积运算量

空洞卷积会丢失局部信息

相关推荐
明月醉窗台9 小时前
深度学习(16)YOLO中的置信度和IOU阈值在训练中及推理中后处理结果的影响
人工智能·深度学习·yolo
victory04319 小时前
深度学习的核心求梯度就是多维函数求导数
人工智能·深度学习
2501_941418559 小时前
【深度学习】实战分享 _ 基于YOLO11-seg的显微手术针操作行为识别研究
人工智能·深度学习
wxdlfkj10 小时前
基于LTP高精度激光位移传感与自适应图像处理的零部件表面微损伤非接触检测系统解决方案
人工智能·深度学习·计算机视觉
深度之眼10 小时前
Nature:物理信息深度学习前沿创新思路
人工智能·深度学习·pinn
程序员老周66610 小时前
10.一文学会GPU与cuda原理,并从其原理来理解FlashAttention
人工智能·深度学习·语言模型·大模型·transformer·gpu算力·cuda
AI工具测评大师10 小时前
怎么有效降低英文文本的GPTZero AI检测率?3步有效降低AI率方法与工
人工智能·深度学习·自然语言处理·ai写作·ai自动写作
kaikaile199510 小时前
基于MATLAB的PSO-ELM(粒子群优化极限学习机)算法实现
深度学习·算法·matlab
biyezuopinvip10 小时前
基于深度学习的新闻文本分类系统的研究与设计(源码)
人工智能·深度学习·分类·源码·代码·基于深度学习的·新闻文本分类系统的研究与设计
java1234_小锋11 小时前
【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - 基于BERT文本分类模型微调
人工智能·深度学习·bert