PyTorch nn.Conv2d 空洞卷积

torch.nn.Conv2d() 中 dilation 参数控制卷积核的间隔

dilation controls the spacing between the kernel points

  • 当 dilation=1 时, 表示卷积核没有额外的空白间距, 也就是标准卷积
  • 当 dilation>1 时, 表示空洞卷积(dilated convolution)

动画演示:

手动计算

以 2*2 的卷积核和 dilation=2 为例, 等效卷积核的大小为:

左上角区域卷积: 1 * 2 + 3 * 0 + 3 * 1 + 1 * 3 = 8, 卷积核中的空白间隔不参与运算, 当然也可以将其置为 0, 等效为 3 * 3 的卷积运算

结果:

使用 PyTorch 计算

python 复制代码
import torch
from torch import nn

data = [
    [1, 2, 3, 0],
    [0, 1, 2, 3],
    [3, 0, 1, 2],
    [2, 3, 0, 1]
]
# 单通道 4*4 图片
# minibatch=1
inp = torch.tensor(data).reshape(1, 1, 4, 4).to(torch.float32)

conv = nn.Conv2d(1, 1, kernel_size=2, dilation=2, bias=False)
conv.weight.data = torch.tensor(
    [[2, 0], [1, 3]]
).reshape(1, 1, 2, 2).to(torch.float32)

oup = conv(inp)
print(oup)

输出

python 复制代码
tensor([[[[ 8., 10.],
          [ 2.,  8.]]]], grad_fn=<ConvolutionBackward0>)

空洞卷积可以扩大感受野, 2*2 的卷积核, dilation 参数设为 2, 可以提取特征图中 3*3 的内容, 却只有 2*2 的卷积运算量

空洞卷积会丢失局部信息

相关推荐
Icomi_4 小时前
【神经网络】0.深度学习基础:解锁深度学习,重塑未来的智能新引擎
c语言·c++·人工智能·python·深度学习·神经网络
陆鳐LuLu6 小时前
深度学习与数据挖掘题库:401-500题精讲
人工智能·深度学习·数据挖掘
紫雾凌寒6 小时前
深度学习|MAE技术全景图:自监督学习的“掩码魔法“如何重塑AI基础
人工智能·深度学习·计算机视觉·自监督学习·vit·视频理解·mae
AI技术控6 小时前
深度学习算法实战——风格迁移(主页有源码)
深度学习
是理不是里_8 小时前
深度学习与普通神经网络有何区别?
人工智能·深度学习·神经网络
@Mr_LiuYang9 小时前
深度学习PyTorch之13种模型精度评估公式及调用方法
人工智能·pytorch·深度学习·模型评估·精度指标·模型精度
幻风_huanfeng9 小时前
每天五分钟深度学习框架PyTorch:使用残差块快速搭建ResNet网络
人工智能·pytorch·深度学习·神经网络·机器学习·resnet
ZHOU_WUYI10 小时前
旋转位置编码 (2)
pytorch·python·深度学习
qq_2739002310 小时前
AF3 squeeze_features函数解读
人工智能·pytorch·深度学习·生物信息学
ZhuBin36511 小时前
推测gpt4o视觉皮层建立的过程
人工智能·深度学习·计算机视觉