【AI学习】扩散模型的一点思考:生成过程为什么要增加噪声项

前面学习了扩散模型,并做了总结PPT

其中有一个疑问:在生成过程中,就是下图的算法2中的第四步,为什么要在预测了噪声项后,Xt减去预测的噪声后,还有再叠加一个噪声项?就是增加的部分。

李宏毅的讲解中,指出,如果不增加这个噪声项,最后就无法有效生成图片。

这两天忽然想到,其实,在前向过程中,每一步都在叠加一个高斯噪声。而在反向过程,每一步都重新估计这个高斯噪声,然后减去预测的噪声,最终恢复图形。但是,看了公式推导我们知道,其实,每一步估计噪声,其实是估计的噪声的均值。如果每一步只是减去一个预测的噪声的均值,那反向过程的每一步就不是如前向过程一样去处理高斯噪声,毕竟均值是一个确定项。所以还要增加前面所说的噪声项目,让反向过程的每一步真正实现减去高斯噪声的目的。

相关推荐
lfPCB8 分钟前
数据决策替代人工判断:AI 重构 PCB 质检标准适配高端电子场景
人工智能·重构
财经三剑客8 分钟前
比亚迪2025年销量超460万辆 同比增长7.73%
人工智能·物联网·汽车
科技林总12 分钟前
【系统分析师】3.3 输入输出系统
学习
进阶小白猿22 分钟前
Java技术八股学习Day17
java·jvm·学习
whale fall25 分钟前
【雅思听力语料库5.1】
笔记·学习
love530love27 分钟前
EPGF 新手教程 22教学模板不是压缩包:EPGF 如何设计“可复制、可检查、可回收”的课程模板?
ide·人工智能·windows·python·架构·pycharm·epgf
土豆.exe36 分钟前
IfAI v0.3.0 - 从“文本“到“多模态“的感知升级
人工智能·编辑器
JicasdC123asd38 分钟前
如何使用YOLOv10n进行台风灾害区域识别与分类——基于改进的HAFB-2模型实现
人工智能·yolo·分类
抖知书1 小时前
喂饭级AI提示词公开!帮短视频创作者写脚本大纲
人工智能
Elastic 中国社区官方博客1 小时前
JINA AI 与 Elasticsearch 的集成
大数据·人工智能·elasticsearch·搜索引擎·全文检索·jina