【AI学习】扩散模型的一点思考:生成过程为什么要增加噪声项

前面学习了扩散模型,并做了总结PPT

其中有一个疑问:在生成过程中,就是下图的算法2中的第四步,为什么要在预测了噪声项后,Xt减去预测的噪声后,还有再叠加一个噪声项?就是增加的部分。

李宏毅的讲解中,指出,如果不增加这个噪声项,最后就无法有效生成图片。

这两天忽然想到,其实,在前向过程中,每一步都在叠加一个高斯噪声。而在反向过程,每一步都重新估计这个高斯噪声,然后减去预测的噪声,最终恢复图形。但是,看了公式推导我们知道,其实,每一步估计噪声,其实是估计的噪声的均值。如果每一步只是减去一个预测的噪声的均值,那反向过程的每一步就不是如前向过程一样去处理高斯噪声,毕竟均值是一个确定项。所以还要增加前面所说的噪声项目,让反向过程的每一步真正实现减去高斯噪声的目的。

相关推荐
moxiaoran57531 小时前
uni-app学习笔记二十九--数据缓存
笔记·学习·uni-app
AI蜗牛之家1 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上2 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
YunTM2 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
pop_xiaoli3 小时前
OC—UI学习-2
学习·ui·ios
Lin Hsüeh-ch'in3 小时前
Vue 学习路线图(从零到实战)
前端·vue.js·学习
舒一笑3 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
恰薯条的屑海鸥4 小时前
零基础在实践中学习网络安全-皮卡丘靶场(第十五期-URL重定向模块)
学习·安全·web安全·渗透测试·网络安全学习
丁先生qaq4 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖4 小时前
神经网络-Day45
人工智能·深度学习·神经网络