【AI学习】扩散模型的一点思考:生成过程为什么要增加噪声项

前面学习了扩散模型,并做了总结PPT

其中有一个疑问:在生成过程中,就是下图的算法2中的第四步,为什么要在预测了噪声项后,Xt减去预测的噪声后,还有再叠加一个噪声项?就是增加的部分。

李宏毅的讲解中,指出,如果不增加这个噪声项,最后就无法有效生成图片。

这两天忽然想到,其实,在前向过程中,每一步都在叠加一个高斯噪声。而在反向过程,每一步都重新估计这个高斯噪声,然后减去预测的噪声,最终恢复图形。但是,看了公式推导我们知道,其实,每一步估计噪声,其实是估计的噪声的均值。如果每一步只是减去一个预测的噪声的均值,那反向过程的每一步就不是如前向过程一样去处理高斯噪声,毕竟均值是一个确定项。所以还要增加前面所说的噪声项目,让反向过程的每一步真正实现减去高斯噪声的目的。

相关推荐
rengang661 分钟前
智能化的重构建议:大模型分析代码结构,提出可读性和性能优化建议
人工智能·性能优化·重构·ai编程
灵遁者书籍作品10 分钟前
语言的拓扑学约束公理:语言对实在的描述具有拓扑不变量——某些真理必须通过悖论、沉默或隐喻表达
人工智能·计算机视觉
一尘之中11 分钟前
觉醒的拓扑学:在量子纠缠与神经幻象中重构现实认知
人工智能·重构
金宗汉11 分钟前
《宇宙递归拓扑学:基于自指性与拓扑流形的无限逼近模型》
大数据·人工智能·笔记·算法·观察者模式
张永清-老清30 分钟前
每周读书与学习->JMeter主要元件详细介绍(一)配置元件
学习·jmeter·性能调优·jmeter性能测试·性能分析·干货分享
Joy T36 分钟前
海南蓝碳:生态财富与科技驱动的新未来
大数据·人工智能·红树林·海南省·生态区建设
N0nename1 小时前
TR3--Transformer之pytorch复现
人工智能·pytorch·python
鼾声鼾语1 小时前
grootN1 grootN1.5 gr00t安装方法以及使用(学习)
学习·angular.js·simulink·isaacsim·isaaclab
北京耐用通信1 小时前
电力自动化新突破:Modbus如何变身Profinet?智能仪表连接的终极解决方案
人工智能·物联网·网络安全·自动化·信息与通信
MYX_3092 小时前
第七章 完整的模型训练
pytorch·python·深度学习·学习