JAVA高性能缓存项目

版本一

代码实现

java 复制代码
import java.util.HashMap;
import java.util.concurrent.TimeUnit;

public class CacheExample01 {
    private final static HashMap<String, Integer> cache = new HashMap<>();

    public static Integer check(String userId) throws InterruptedException {
        Integer result = cache.get(userId);
        //未查到结果则保存到缓存中,缓存中有则直接返回
        if (result == null) {
            result = computer(userId);
            cache.put(userId, result);
        }
        return result;
    }

    private static Integer computer(String userId) throws InterruptedException {
        TimeUnit.SECONDS.sleep(5);//模拟查询数据库耗时
        return new Integer(userId);
    }

    public static void main(String[] args) throws InterruptedException {
        //模拟实际查询
        System.out.println("第一次查询:" + check("1314"));
        System.out.println("第二次查询:" + check("1314"));
        //结果为:
        //第一次查询:1314
        //第二次查询:1314
        //其中第一次查询耗时>5s, 第二次查询耗时<1s;
    }
}

特点

  1. 代码复用性差,缓存计算与业务耦合
  2. 线程不安全,并发情况下会导致意外错误

版本二 用装饰者模式解耦

计算接口

Computable.java文件

java 复制代码
package computable;

/*有一个计算函数computer, 用来代表耗时计算,每个计算器
都要实现这个接口,这样就可以无入侵实现缓存功能
*/
public interface Computable<A, V> {
    V compute(A arg) throws Exception;
}

具体耗时查询实现

ExpensiveFunciton.java文件

java 复制代码
package computable;

public class ExpensiveFunciton implements Computable<String, Integer>{
   
    @Override
    public Integer compute(String arg) throws Exception {
   		System.out.println("进入耗时缓存");
        Thread.sleep(5000);
        return Integer.valueOf(arg);
    }
}

缓存

java 复制代码
import java.util.HashMap;
import java.util.Map;

import computable.Computable;
import computable.ExpensiveFunciton;

public class CacheExample02<A, V> implements Computable<A, V> {
    
    private final Map<A, V> cache = new HashMap<>();

    private final Computable<A, V> c;

    private CacheExample02(Computable<A, V> c) {
        this.c = c;
    }

    @Override
    public synchronized V compute(A args) throws Exception {
        V result = cache.get(args);
        if (result == null) {
            result = c.compute(args);
            cache.put(args, result);
        }
        return result;
    }

    public static void main(String[] args) throws Exception {
        CacheExample02<String, Integer> example = new CacheExample02<>(new ExpensiveFunciton());
        Integer result = example.compute("1314");
        System.out.println("第一次结算结果:" + result);
        result = example.compute("1314");
        System.out.println("第二次计算结果:" + result);
        /*结果为:
        进入耗时缓存
        第一次查询结果:1314
        第二次查询结果:1314  
        */

    }
}

特点

  1. 解决了缓存计算与业务耦合的问题,实现了无侵入式的计算接口
  2. 无法并行计算,效率低

版本三 ConcurrentHashMap保证线程安全

代码实现

用ConcurrentHashMap替代版本二的HashMap即可

java 复制代码
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import computable.Computable;
import computable.ExpensiveFunciton;

public class CacheExample02<A, V> implements Computable<A, V> {
    
    private final Map<A, V> cache = new ConcurrentHashMap<>();

    private final Computable<A, V> c;

    private CacheExample02(Computable<A, V> c) {
        this.c = c;
    }

    @Override
    public V compute(A args) throws Exception {
        V result = cache.get(args);
        if (result == null) {
            result = c.compute(args);
            cache.put(args, result);
        }
        return result;
    }

    public static void main(String[] args) throws Exception {
        CacheExample02<String, Integer> example = new CacheExample02<>(new ExpensiveFunciton());
        Integer result = example.compute("1314");
        System.out.println("第一次结算结果:" + result);
        result = example.compute("1314");
        System.out.println("第二次计算结果:" + result);
    }
}

特点

  1. 用ConcurrentHashMap替代了HashMap,实现了线程安全
  2. 在计算完成前,多个要求计算相同值的请求到来,会导致计算多遍,导致低性能

版本四 用Future解决重复计算问题

代码实现

java 复制代码
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import computable.Computable;
import computable.ExpensiveFunciton;

public class CacheExample03<A, V> implements Computable<A, V> {
    
    private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

    private final Computable<A, V> c;
    
    private CacheExample03(Computable<A, V> c) {
        this.c = c;
    }

    @Override
    public V compute(A arg) throws Exception {
        Future<V> f = cache.get(arg);
        if (f == null) {
            Callable<V> callable = new Callable<V>() {
                @Override
                public V call() throws Exception {
                    return c.compute(arg);
                }
            };
            FutureTask<V> ft = new FutureTask<>(callable);
            f = ft;
            cache.put(arg, ft);
            ft.run();
        }
        return f.get();
    }

    public static void main(String[] args) throws Exception {
        CacheExample03<String, Integer> example = new CacheExample03<>(new ExpensiveFunciton());
        
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第一次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("6666");
                    System.out.println("第二次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第三次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第四次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

代码结果为:

结果分析

需要注意的是,如果把计算值从"1314", "6666", "1314", "1314"全部改成"1314"的话,代码结果如下



但是当相同请求结果上升到六个甚至更多时,也只会有2-3个线程进入耗时缓存

证明了这个方法能解决大部分的重复计算问题,不能完全解决。因为在多个相同请求值同时进入时,在第一个请求还未达到 cache.put(arg, ft);这条代码时,其它线程仍会重复计算。

注意 :

如果线程的创建用的是Lambda 表达式,会导致进入耗时缓存略多于使用匿名内部类 Runnable 来创建线程,因为Lambda表达式性能略优于使用匿名内部类 Runnable。

使用Lambda表达式结果如下:

特点

  • 解决了大部分的重复计算问题,但仍然存在小概率的重复计算情况

版本五 用原子组合操作解决小部分重复操作问题

代码实现

java 复制代码
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import computable.Computable;
import computable.ExpensiveFunciton;

public class CacheExample02<A, V> implements Computable<A, V> {
    private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

    private final Computable<A, V> c;

    private CacheExample02(Computable<A, V> c) {
        this.c = c;
    }

    @Override
    public V compute(A arg) throws Exception {
        Future<V> f = cache.get(arg);
        if (f == null) {
            Callable<V> callable = new Callable<V>() {
                @Override
                public V call() throws Exception {
                    return c.compute(arg);
                }
            };
            FutureTask<V> ft = new FutureTask<>(callable);
            f = cache.putIfAbsent(arg, ft);
            if (f == null) {
                f = ft;
                ft.run();
            }
        }
        return f.get();
    }

    public static void main(String[] args) throws Exception {
        CacheExample02<String, Integer> example = new CacheExample02<>(new ExpensiveFunciton());
        
        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第一次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第二次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第三次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch blocks
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第四次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch blocks
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第五次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch blocks
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第六次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch blocks
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第七次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第八次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第九次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                Integer result = example.compute("1314");
                System.out.println("第十次计算结果:" + result);
            } catch (Exception e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }).start();
    }
}

结果分析

代码结果

可以看到在多个线程同时请求相同值时,也只有一个线程进入了耗时计算(在多次重复实验后也是如此)

特点

  1. 完全解决了重复计算的问题,使得不同线程在执行的同时避免了重复计算的消耗,大大提升了性能
  2. 未考虑在业务中计算出错时的错误处理以及缓存污染问题

版本六 处理缓存污染以及错误处理

代码实现

MayfailFunction.java文件

主要用于模拟业务中可能出现的计算错误

java 复制代码
package computable;

import java.io.IOException;
import java.util.concurrent.TimeUnit;

public class MayfailFunction implements Computable<String, Integer>{
    @Override
    public Integer compute(String arg) throws Exception{
        double random = Math.random();
        if (random < 0.5) {
            throw new IOException("计算出错");
        }
        TimeUnit.SECONDS.sleep(2);
        return Integer.valueOf(arg);
    }
}

主要实现文件

java 复制代码
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import computable.Computable;
import computable.ExpensiveFunciton;
import computable.MayfailFunction;

public class CacheExample04<A, V> implements Computable<A, V> {
    
    private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

    private final Computable<A, V> c;
    
    private CacheExample04(Computable<A, V> c) {
        this.c = c;
    }

    @Override
    public V compute(A arg) throws InterruptedException, CancellationException {
    //具体计算部分用while(true)包裹起来,是为了在计算出错后能自动重复计算直至计算成功
        while (true) {
            Future<V> f = cache.get(arg);
            if (f == null) {
                Callable<V> callable = new Callable<V>() {
                    @Override
                    public V call() throws Exception {
                        return c.compute(arg);
                    }
                };
                FutureTask<V> ft = new FutureTask<>(callable);
                f = cache.putIfAbsent(arg, ft);
                if (f == null) {
                    f = ft;
                    ft.run();
                }
            }
            try {
                return f.get();
            } catch (InterruptedException e) {
                cache.remove(arg);//在出现错误的时候将计算出错的值从缓存池中移除,避免缓存池的污染
                throw e;
            } catch (ExecutionException e) {
                cache.remove(arg);
                e.printStackTrace();
            } catch (CancellationException e) {
                cache.remove(arg);
                throw e;
            }
        }
    }

    public static void main(String[] args) throws Exception {
        CacheExample04<String, Integer> example = new CacheExample04<>(new MayfailFunction());
        
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第一次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第二次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第三次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第四次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第五次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.compute("1314");
                    System.out.println("第六次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

结果分析

代码结果

成功地实现了在计算出错的情况下,仍然能自动重复计算直到计算成功,并且及时将计算出错的值从缓存中去除。

注意

如果在捕获错误时缺少cache.remove(arg);(即不及时将计算错误的值从缓存池中去除)会导致缓存池污染,导致相同请求值返回错误的值(在该代码中体现为一直出现计算错误并且不会停止)。

错误结果如下:

出现无止境的"计算出错"的报错

版本七 ScheduledExecutorService实现缓存过期

代码实现

java 复制代码
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import computable.Computable;
import computable.ExpensiveFunciton;
import computable.MayfailFunction;

public class CacheExample05<A, V> implements Computable<A, V> {
    
    private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

    private final Computable<A, V> c;
    
    private CacheExample05(Computable<A, V> c) {
        this.c = c;
    }

    @Override
    public V compute(A arg) throws InterruptedException, CancellationException {
        while (true) {
            Future<V> f = cache.get(arg);
            if (f == null) {
                Callable<V> callable = new Callable<V>() {
                    @Override
                    public V call() throws Exception {
                        return c.compute(arg);
                    }
                };
                FutureTask<V> ft = new FutureTask<>(callable);
                f = cache.putIfAbsent(arg, ft);
                if (f == null) {
                    f = ft;
                    ft.run();
                }
            }
            try {
                return f.get();
            } catch (InterruptedException e) {
                cache.remove(arg);
                throw e;
            } catch (ExecutionException e) {
                cache.remove(arg);
                e.printStackTrace();
            } catch (CancellationException e) {
                cache.remove(arg);
                throw e;
            }
        }
    }

    private final static ScheduledExecutorService executor = new ScheduledThreadPoolExecutor(6);

    public V compute(A arg, long expireTime) throws CancellationException, InterruptedException {
        if (expireTime > 0) {
            executor.schedule(() -> {
                expire(arg);
            }, expireTime, TimeUnit.SECONDS);
        };
        return compute(arg);
    }

    public synchronized void expire(A key) {
        Future<V> f = cache.get(key);
        if (f != null) {
            if (!f.isDone()) {
                f.cancel(true);
                System.out.println("任务被取消了");
            }
            System.out.println("过期时间到,缓存被清除");
            cache.remove(key);
        }
    }
//随机赋予缓存失效时间,避免同时失效导致线程长时间阻塞
     public V computeRandomExpire(A arg) throws CancellationException, InterruptedException {
        long randomExpireTime = (long) Math.random() * 1000;
        return compute(arg, randomExpireTime);
     }

    public static void main(String[] args) throws Exception {
        CacheExample05<String, Integer> example = new CacheExample05<>(new MayfailFunction());
        
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.computeRandomExpire("1314");
                    System.out.println("第一次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        Thread.sleep(10000);

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.computeRandomExpire("1314");
                    System.out.println("第二次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.computeRandomExpire("1314");
                    System.out.println("第三次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.computeRandomExpire("1314");
                    System.out.println("第四次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.computeRandomExpire("1314");
                    System.out.println("第五次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Integer result = example.computeRandomExpire("1314");
                    System.out.println("第六次计算结果:" + result);
                } catch (Exception e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

特点:

  • 实现了随机缓存过期失效功能

缓存项目性能测试

线程池压力测试

部分工具类用法功能:

  1. isShutdown():

    这个方法用来检查线程池是否已经被关闭。如果线程池已经调用了 shutdown() 方法,那么 isShutdown() 会返回 true。

    shutdown() 方法会启动线程池的关闭过程,它会停止接收新的任务,并且会等待所有已提交的任务完成执行后关闭线程池。

  2. isTerminated():

    这个方法用来检查所有任务是否都已完成执行。如果线程池已经调用了 shutdown() 方法,并且所有提交的任务都已经执行完毕,那么isTerminated() 会返回 true。

    isTerminated() 通常与 awaitTermination()方法一起使用,awaitTermination() 会阻塞当前线程直到所有任务执行完成或者超时。

简而言之,isShutdown() 表示线程池是否已经开始关闭过程,而 isTerminated() 表示线程池是否已经完全关闭,即所有任务都已执行完毕。在使用线程池时,通常先调用 shutdown() 方法来开始关闭过程,然后通过 isTerminated() 或 awaitTermination() 来检查关闭过程是否完成。

代码实现

创建含大量线程的线程池执行缓存的过程

java 复制代码
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import computable.Computable;
import computable.ExpensiveFunciton;

public class CacheExample06<A, V> implements Computable<A, V> {
    
    private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

    private final Computable<A, V> c;
    
    private CacheExample06(Computable<A, V> c) {
        this.c = c;
    }

    @Override
    public V compute(A arg) throws InterruptedException, CancellationException {
        while (true) {
            Future<V> f = cache.get(arg);
            if (f == null) {
                Callable<V> callable = new Callable<V>() {
                    @Override
                    public V call() throws Exception {
                        return c.compute(arg);
                    }
                };
                FutureTask<V> ft = new FutureTask<>(callable);
                f = cache.putIfAbsent(arg, ft);
                if (f == null) {
                    f = ft;
                    ft.run();
                }
            }
            try {
                return f.get();
            } catch (InterruptedException e) {
                cache.remove(arg);
                throw e;
            } catch (ExecutionException e) {
                e.printStackTrace();
                cache.remove(arg);
            } catch (CancellationException e) {
                cache.remove(arg);
                throw e;
            }
        }
    }

    public static void main(String[] args) throws Exception {
        CacheExample06<String, Integer> example = new CacheExample06<>(new ExpensiveFunciton());
        
        ExecutorService executor = Executors.newFixedThreadPool(6000);

        long startTime = System.currentTimeMillis();
        for (int i = 0; i < 6000; i ++ ) {
            executor.submit(() -> {
                Integer result = null;
                try {
                    result = example.compute("1314");
                } catch (CancellationException | InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                System.out.println("result:" + result);
            });
        };

        executor.shutdown();

        while (!executor.isTerminated()) {

        }

        System.out.println("总耗时:" + (System.currentTimeMillis() - startTime));
    }
}

结果分析

第一次缓存耗时5s + 后续从缓存中获取结果1.651s = 总耗时6651ms

存在问题

大量请求实际上不是同时到达,而是先后到达,导致给缓存池造成的压力较小,无法真正体现缓存池在多线程并发访问下的性能

CountDownLatch压力测试

使用CountDownLatch工具类来真正实现大量线程在同一时间下的并发访问,能给予缓存池更大的压力

工具类用法

  1. 计数器操作
    countDown():每次调用这个方法,计数器的值就会减1。当计数器的值达到0时,CountDownLatch 就会"开启",所有等待在 await() 方法上的线程将继续执行。
    getCount():返回当前计数器的值。
  2. 等待
    await():当前线程会在这里阻塞,直到 CountDownLatch 被"开启"(即计数器的值达到0)。如果 CountDownLatch 没有被开启,await() 方法会无限期地等待。
    await(long timeout, TimeUnit unit):与 await() 类似,但是它允许你设置一个超时时间。如果在指定的时间内计数器的值没有达到0,线程将不再阻塞,并返回一个布尔值,表示是否在超时前计数器已经达到0。

代码实现

java 复制代码
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import computable.Computable;
import computable.ExpensiveFunciton;

public class CacheExample06<A, V> implements Computable<A, V> {
    
    private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();

    private final Computable<A, V> c;
    
    private CacheExample06(Computable<A, V> c) {
        this.c = c;
    }

    private final static CountDownLatch latch = new CountDownLatch(1);

    private static CacheExample06<String, Integer> example = new CacheExample06<>(new ExpensiveFunciton());
    @Override
    public V compute(A arg) throws InterruptedException, CancellationException {
        while (true) {
            Future<V> f = cache.get(arg);
            if (f == null) {
                Callable<V> callable = new Callable<V>() {
                    @Override
                    public V call() throws Exception {
                        return c.compute(arg);
                    }
                };
                FutureTask<V> ft = new FutureTask<>(callable);
                f = cache.putIfAbsent(arg, ft);
                if (f == null) {
                    f = ft;
                    ft.run();
                }
            }
            try {
                return f.get();
            } catch (InterruptedException e) {
                cache.remove(arg);
                throw e;
            } catch (ExecutionException e) {
                e.printStackTrace();
                cache.remove(arg);
            } catch (CancellationException e) {
                cache.remove(arg);
                throw e;
            }
        }
    }

    public static void main(String[] args) throws Exception {    
        ExecutorService executor = Executors.newFixedThreadPool(100);

        long startTime = System.currentTimeMillis();
        for (int i = 0; i < 100; i ++ ) {
            executor.submit(() -> {
                Integer result = null;
                try {
                    System.out.println(Thread.currentThread().getName() + "被阻塞");
                    latch.await();
                    System.out.println(Thread.currentThread().getName() + "开始运行");
                    result = example.compute("1314");
                } catch (CancellationException | InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                System.out.println("result:" + result);
            });
        };

        executor.shutdown();
        Thread.sleep(5000);//保证所有线程都被阻塞后再统一放行
        latch.countDown();

        while (!executor.isTerminated()) {

        }

        System.out.println("总耗时:" + (System.currentTimeMillis() - startTime));
    }
}

结果分析

部分截图,总的来说线程1 - 100先被阻塞,后统一被放行

主线程sleep(5000) + 缓存计算5s + 剩余线程读取缓存94ms = 总耗时10094ms

相关推荐
草莓base几秒前
【手写一个spring】spring源码的简单实现--bean对象的创建
java·spring·rpc
legend_jz13 分钟前
【Linux】线程控制
linux·服务器·开发语言·c++·笔记·学习·学习方法
drebander25 分钟前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
乌啼霜满天24928 分钟前
Spring 与 Spring MVC 与 Spring Boot三者之间的区别与联系
java·spring boot·spring·mvc
tangliang_cn33 分钟前
java入门 自定义springboot starter
java·开发语言·spring boot
程序猿阿伟34 分钟前
《智能指针频繁创建销毁:程序性能的“隐形杀手”》
java·开发语言·前端
Grey_fantasy44 分钟前
高级编程之结构化代码
java·spring boot·spring cloud
新知图书1 小时前
Rust编程与项目实战-模块std::thread(之一)
开发语言·后端·rust
威威猫的栗子1 小时前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
力透键背1 小时前
display: none和visibility: hidden的区别
开发语言·前端·javascript