【天气识别系统】Python+卷积神经网络算法+人工智能+深度学习+TensorFlow+算法模型训练+Django网页界面

一、介绍

天气识别系统,以Python作为主要编程语言,通过收集了4种常见的天气图像数据集(多云、雨天、晴天、日出),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练,最后得到一个识别精度较高的h5格式模型文件,然后基于Django搭建Web网页端操作界面,实现用户上传一张天气图片识别其名称。

二、系统效果图片展示

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/si2hvt871g7larxu

四、卷积神经网络算法

卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,特别适用于处理图像数据。它的特点包括:

  1. 局部感受野:CNN通过卷积层提取局部特征,每个卷积核只关注输入数据的一小部分,这模拟了生物视觉系统的工作原理。

  2. 权重共享:在卷积层中,同一个卷积核的权重在整个输入数据上是共享的,这减少了模型的参数数量,降低了过拟合的风险。

  3. 平移不变性:由于权重共享,CNN能够识别出在不同位置出现的相同模式,这使得模型对图像的平移具有不变性。

  4. 层次化特征提取:CNN通过多个卷积层和池化层逐步提取图像的高级特征,从边缘到复杂形状再到抽象概念。

  5. 端到端学习:CNN可以从原始像素直接学习到最终的分类或回归任务,无需手动特征工程。

  6. 多任务学习能力:CNN可以被设计成执行多种任务,如分类、检测、分割等。

下面是一个简单的CNN示例代码,使用Python的Keras库构建一个用于MNIST手写数字识别的模型:

python 复制代码
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    MaxPooling2D((2, 2)),
    Conv2D(64, (3, 3), activation='relu'),
    MaxPooling2D((2, 2)),
    Flatten(),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

这段代码定义了一个简单的CNN模型,包含两个卷积层和池化层,随后是一个展平层和两个全连接层,最后一层使用softmax激活函数进行多分类。

相关推荐
树獭非懒1 分钟前
AI 大模型应用开发|基础原理
人工智能·aigc·ai编程
AI营销实验室10 分钟前
AI CRM系统升级,原圈科技赋能销售洞察
人工智能·科技
eve杭32 分钟前
AI、大数据与智能时代:从理论基石到实战路径
人工智能·python·5g·网络安全·ai
TG:@yunlaoda360 云老大33 分钟前
腾讯云国际站代理商的QAPM服务能提供哪些专属服务?
人工智能·云计算·腾讯云
Honmaple1 小时前
中国四级城市联动数据,包含港澳台,内含json , sql , python 脚本
python·sql·json
BoBoZz191 小时前
Curvatures 曲率的计算、边缘曲率的调整以及曲率、颜色的映射
python·vtk·图形渲染·图形处理
明月满西楼1 小时前
4.2.1 分类任务
人工智能
AI_56781 小时前
Webpack5优化的“双引擎”
大数据·人工智能·性能优化
LZL_SQ1 小时前
昇腾NPU架构设计 从抽象硬件模型到物理实现
人工智能·昇腾·cann·ascend c
少吃零食多运动1 小时前
【Jupyter notebook修改工作目录】
python·jupyter