PyTorch model.train()和model.eval()介绍

model.train()model.eval() 是 PyTorch 中常用的两个方法,用于切换模型的模式(training/evaluation)。它们的主要目的是在训练和评估过程中设置模型的行为,使其根据不同阶段进行合适的计算,特别是涉及一些特定层的行为差异(如 DropoutBatchNorm 层)。以下是它们的详细介绍:

1. model.train()

model.train() 将模型设置为"训练模式"(training mode)。在调用此方法后,模型内部的各个层会自动调整到训练所需的状态。

  • 关键影响层

    • Dropout :在训练模式下,Dropout 会随机丢弃一些神经元,以增加模型的泛化能力,减少过拟合。
    • BatchNormBatchNorm 会根据当前批次数据计算均值和方差,并更新内部的运行均值和方差,以逐步累积整体数据的统计信息。
  • 使用场景 :训练模型时调用。每次开始训练循环之前,调用 model.train() 以确保模型处于正确的训练状态。

  • 代码示例

2. model.eval()

model.eval() 将模型设置为"评估模式"(evaluation mode)。在此模式下,模型会调整为适合推理或验证的状态。

  • 关键影响层

    • Dropout :在评估模式下,Dropout 层会停用,不再随机丢弃神经元,确保每次前向传播都得到相同的结果。
    • BatchNormBatchNorm 层会使用训练期间累积的均值和方差,而不是当前批次的统计信息,以确保推理结果的稳定性。
  • 使用场景:在验证或测试阶段,或者进行模型推理时调用。评估模式能确保模型在这些阶段的行为一致,并且减少不必要的计算负担。

  • 代码示例

复制代码
  model.eval()  # 切换到评估模式
  with torch.no_grad():  # 禁用梯度计算,节省内存
      for data, target in test_loader:
          output = model(data)
          test_loss += loss_fn(output, target).item()

3. 注意事项

  • 作用范围model.train()model.eval() 对模型及其所有子模块有效,所有层都会递归切换模式。
  • torch.no_grad() 配合使用 :在评估模式下通常会使用 with torch.no_grad() 禁用梯度计算,以减少内存占用和加速计算。model.eval() 本身并不会禁用梯度计算,二者需要配合使用。

总结

  • model.train() :在训练时调用,适用于调整模型以适应训练的行为,如随机 Dropout 和动态 BatchNorm
  • model.eval() :在评估或推理时调用,确保推理的稳定性,Dropout 停用,BatchNorm 使用训练时的统计数据。
相关推荐
Coding茶水间20 分钟前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
头发还在的女程序员28 分钟前
三天搞定招聘系统!附完整源码
开发语言·python
温轻舟33 分钟前
Python自动办公工具06-设置Word文档中表格的格式
开发语言·python·word·自动化工具·温轻舟
weixin79893765432...41 分钟前
Vue + Express + DeepSeek 实现一个简单的对话式 AI 应用
vue.js·人工智能·express
花酒锄作田1 小时前
[python]FastAPI-Tracking ID 的设计
python·fastapi
nju_spy1 小时前
ToT与ReAct:突破大模型推理能力瓶颈
人工智能·大模型·大模型推理·tot思维树·react推理行动·人工智能决策·ai推理引擎
AI-智能1 小时前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
y***86692 小时前
C机器学习.NET生态库应用
人工智能·机器学习
deng12042 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
d***95622 小时前
爬虫自动化(DrissionPage)
爬虫·python·自动化