PyTorch model.train()和model.eval()介绍

model.train()model.eval() 是 PyTorch 中常用的两个方法,用于切换模型的模式(training/evaluation)。它们的主要目的是在训练和评估过程中设置模型的行为,使其根据不同阶段进行合适的计算,特别是涉及一些特定层的行为差异(如 DropoutBatchNorm 层)。以下是它们的详细介绍:

1. model.train()

model.train() 将模型设置为"训练模式"(training mode)。在调用此方法后,模型内部的各个层会自动调整到训练所需的状态。

  • 关键影响层

    • Dropout :在训练模式下,Dropout 会随机丢弃一些神经元,以增加模型的泛化能力,减少过拟合。
    • BatchNormBatchNorm 会根据当前批次数据计算均值和方差,并更新内部的运行均值和方差,以逐步累积整体数据的统计信息。
  • 使用场景 :训练模型时调用。每次开始训练循环之前,调用 model.train() 以确保模型处于正确的训练状态。

  • 代码示例

2. model.eval()

model.eval() 将模型设置为"评估模式"(evaluation mode)。在此模式下,模型会调整为适合推理或验证的状态。

  • 关键影响层

    • Dropout :在评估模式下,Dropout 层会停用,不再随机丢弃神经元,确保每次前向传播都得到相同的结果。
    • BatchNormBatchNorm 层会使用训练期间累积的均值和方差,而不是当前批次的统计信息,以确保推理结果的稳定性。
  • 使用场景:在验证或测试阶段,或者进行模型推理时调用。评估模式能确保模型在这些阶段的行为一致,并且减少不必要的计算负担。

  • 代码示例

复制代码
  model.eval()  # 切换到评估模式
  with torch.no_grad():  # 禁用梯度计算,节省内存
      for data, target in test_loader:
          output = model(data)
          test_loss += loss_fn(output, target).item()

3. 注意事项

  • 作用范围model.train()model.eval() 对模型及其所有子模块有效,所有层都会递归切换模式。
  • torch.no_grad() 配合使用 :在评估模式下通常会使用 with torch.no_grad() 禁用梯度计算,以减少内存占用和加速计算。model.eval() 本身并不会禁用梯度计算,二者需要配合使用。

总结

  • model.train() :在训练时调用,适用于调整模型以适应训练的行为,如随机 Dropout 和动态 BatchNorm
  • model.eval() :在评估或推理时调用,确保推理的稳定性,Dropout 停用,BatchNorm 使用训练时的统计数据。
相关推荐
DisonTangor5 分钟前
【字节拥抱开源】字节团队开源视频模型 ContentV: 有限算力下的视频生成模型高效训练
人工智能·开源·aigc
DartistCode9 分钟前
动手学深度学习pytorch(第一版)学习笔记汇总
pytorch·深度学习·学习
大白爱琴14 分钟前
使用python进行图像处理—像素级操作与图像算术(4)
开发语言·图像处理·python
吴声子夜歌15 分钟前
OpenCV——图像基本操作(一)
python·opencv·计算机视觉
zhanghongyi_cpp15 分钟前
美食出处(文件版)
python
春末的南方城市23 分钟前
腾讯开源视频生成工具 HunyuanVideo-Avatar,上传一张图+一段音频,就能让图中的人物、动物甚至虚拟角色“活”过来,开口说话、唱歌、演相声!
人工智能·计算机视觉·自然语言处理·aigc·音视频·视频生成
UQI-LIUWJ25 分钟前
论文笔记:Urban Computing in the Era of Large Language Models
人工智能·语言模型·自然语言处理
张较瘦_26 分钟前
[论文阅读] 人工智能+软件工程 | MemFL:给大模型装上“项目记忆”,让软件故障定位又快又准
论文阅读·人工智能·软件工程
yzx99101329 分钟前
基于 PyTorch 和 OpenCV 的实时表情检测系统
人工智能·pytorch·opencv
ICscholar34 分钟前
生成对抗网络(GAN)损失函数解读
人工智能·机器学习·生成对抗网络