PyTorch model.train()和model.eval()介绍

model.train()model.eval() 是 PyTorch 中常用的两个方法,用于切换模型的模式(training/evaluation)。它们的主要目的是在训练和评估过程中设置模型的行为,使其根据不同阶段进行合适的计算,特别是涉及一些特定层的行为差异(如 DropoutBatchNorm 层)。以下是它们的详细介绍:

1. model.train()

model.train() 将模型设置为"训练模式"(training mode)。在调用此方法后,模型内部的各个层会自动调整到训练所需的状态。

  • 关键影响层

    • Dropout :在训练模式下,Dropout 会随机丢弃一些神经元,以增加模型的泛化能力,减少过拟合。
    • BatchNormBatchNorm 会根据当前批次数据计算均值和方差,并更新内部的运行均值和方差,以逐步累积整体数据的统计信息。
  • 使用场景 :训练模型时调用。每次开始训练循环之前,调用 model.train() 以确保模型处于正确的训练状态。

  • 代码示例

2. model.eval()

model.eval() 将模型设置为"评估模式"(evaluation mode)。在此模式下,模型会调整为适合推理或验证的状态。

  • 关键影响层

    • Dropout :在评估模式下,Dropout 层会停用,不再随机丢弃神经元,确保每次前向传播都得到相同的结果。
    • BatchNormBatchNorm 层会使用训练期间累积的均值和方差,而不是当前批次的统计信息,以确保推理结果的稳定性。
  • 使用场景:在验证或测试阶段,或者进行模型推理时调用。评估模式能确保模型在这些阶段的行为一致,并且减少不必要的计算负担。

  • 代码示例

复制代码
  model.eval()  # 切换到评估模式
  with torch.no_grad():  # 禁用梯度计算,节省内存
      for data, target in test_loader:
          output = model(data)
          test_loss += loss_fn(output, target).item()

3. 注意事项

  • 作用范围model.train()model.eval() 对模型及其所有子模块有效,所有层都会递归切换模式。
  • torch.no_grad() 配合使用 :在评估模式下通常会使用 with torch.no_grad() 禁用梯度计算,以减少内存占用和加速计算。model.eval() 本身并不会禁用梯度计算,二者需要配合使用。

总结

  • model.train() :在训练时调用,适用于调整模型以适应训练的行为,如随机 Dropout 和动态 BatchNorm
  • model.eval() :在评估或推理时调用,确保推理的稳定性,Dropout 停用,BatchNorm 使用训练时的统计数据。
相关推荐
nju_spy1 分钟前
南京大学 LLM开发基础(一)前向反向传播搭建
人工智能·pytorch·深度学习·大语言模型·梯度·梯度下降·反向传播
dragon_perfect9 分钟前
全流程基于Yolov8实现在Label-Studio实现半自动标注,已经把整个流程理清楚,把所有的坑解决。
开发语言·python·yolo·labelstudio
kalvin_y_liu14 分钟前
四款主流深度相机在Python/C#开发中的典型案例及技术实现方案
开发语言·python·数码相机
艾醒14 分钟前
探索大语言模型(LLM):Open-WebUI的安装
人工智能·算法·全栈
AI Echoes23 分钟前
LLMOps平台:开源项目LMForge = GPTs + Coze
人工智能·python·langchain·开源·agent
王伯安呢23 分钟前
Python实战:爬取百度热搜榜,制作动态可视化报告
python·百度·中文分词·jieba·新手教程·技术教程
风信子的猫Redamancy26 分钟前
文心大模型 X1.1:百度交出的“新深度思考”答卷
人工智能·百度·大模型·深度思考
聚客AI30 分钟前
🚀从零构建AI智能体:九大核心技术拆解与落地建议
人工智能·agent·mcp
SUNxRUN33 分钟前
【Python - 类库 - PyMySQL】(02)使用“PyMySQL“插入变量
python·pymysql
HUIMU_43 分钟前
YOLOv5实战-GPU版本的pytorch虚拟环境配置
人工智能·pytorch·深度学习·yolo