RT-DETR-V2 TensorRT C++ 部署

RT-DETRv2_TensorRT_Cplusplus

前几天看到RT-DETR都到V3了,有同事问搞过DETR没,之前还真部署玩过,写了两篇博客【DETR tensorRT 部署】【DETR tensorRT部署去除推理过程无用辅助头+fp16部署再次加速+解决转tensorrt 输出全为0问题的新方法】,当时部署DETR时有两个问题:第一个,不用预训练权重训练自己数据集MAP为0;第二个部署tensorRTs时输出全为0。第一个问题参考官方提供的加载预训练权重很容易解决,第二个问题部署tensorRT输出全为0的问题,网上资料很少,困扰了很久,反反复复思考,是找到了一个解决方法,但后续又详细研究了一下detr,最终想到一个解决的输出全为0的新方法,不仅部署简单而且速度更快。趁着这两天有时间抓紧折腾一下rt-detr,本来想部署一下rt-detr-v3,奈何代码还没开源,那就折腾一下rt-detr-v2。

RT-DETRv2 tensorrt C++ 部署

【完整代码】

本示例中,包含完整的代码、模型、测试图片、测试结果。

TensorRT版本:TensorRT-8.6.1.6

rt-detrv2 训练

训练参考官方开源代码。

导出onnx模型

在官方导出onnx 的基础上进行简单的调整,这里不需要动态batch,也不需要进行解码到输入分辨率,进行了如下调整:

python 复制代码
        def forward(self, images, orig_target_sizes):
            outputs = self.model(images)
            # outputs = self.postprocessor(outputs, orig_target_sizes)
            outputs = torch.sigmoid(outputs['pred_logits']), outputs['pred_boxes']
            return outputs


    model = Model()
    data = torch.rand(1, 3, 640, 640)

    torch.onnx.export(
        model, 
        data,
        args.output_file,
        input_names=['images'],
        output_names=['output1', 'output2'],
        opset_version=16, 
        verbose=False,
        do_constant_folding=True,
    )

最终导出的onnx结构如下:

onnx 运行结果

onnx 测试脚本【链接】

TensorRT C++ 部署

tensorrt 环境搭建参考官方文档,主要版本和cuda匹配。

1、修改Tensorrt使用版本

2、修改代码中模型对应的路径

3、编译运行

shellpower 复制代码
# 编译
cd RT-DETRv2_TensorRT_Cplusplus
mkdir build
cd build
cmake ..
make


# 运行
./detr_trt

tensorrt 运行结果

特别说明:本示例用fp16精度掉的非常多,默认使用的fp32。

运行时耗

本示例使用的是 rtdetrv2_r18vd_120e_coco.yml 模型,模型输入分别率640x640,显卡rtx4090,cuda12.5,fp32。

待解决问题

用FP16精度丢的很严重,目前还不知道为啥。

相关推荐
墨利昂8 小时前
10.17RNN情感分析实验:加载预训练词向量模块整理
人工智能·rnn·深度学习
【建模先锋】8 小时前
一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型
人工智能·lstm·ceemdan·预测模型·风速预测·时间序列预测模型
fsnine8 小时前
YOLOv2原理介绍
人工智能·计算机视觉·目标跟踪
倔强的石头1069 小时前
AI修图革命:IOPaint+cpolar让废片拯救触手可及
人工智能·cpolar·iopaint
文火冰糖的硅基工坊9 小时前
[人工智能-大模型-15]:大模型典型产品对比 - 数字人
人工智能·大模型·大语言模型
JJJJ_iii9 小时前
【机器学习05】神经网络、模型表示、前向传播、TensorFlow实现
人工智能·pytorch·python·深度学习·神经网络·机器学习·tensorflow
William.csj9 小时前
服务器/Pytorch——对于只调用一次的函数初始化,放在for训练外面和里面的差异
人工智能·pytorch·python
魔术师卡颂9 小时前
不就写提示词?提示词工程为啥是工程?
前端·人工智能·后端
Ingsuifon9 小时前
pytorch踩坑记录
人工智能·pytorch·python
聚梦小课堂9 小时前
3D生成软件Rodin 2.0 简单测试案例
人工智能·图形图像·3d生成·rodin·产品体验