RT-DETR-V2 TensorRT C++ 部署

RT-DETRv2_TensorRT_Cplusplus

前几天看到RT-DETR都到V3了,有同事问搞过DETR没,之前还真部署玩过,写了两篇博客【DETR tensorRT 部署】【DETR tensorRT部署去除推理过程无用辅助头+fp16部署再次加速+解决转tensorrt 输出全为0问题的新方法】,当时部署DETR时有两个问题:第一个,不用预训练权重训练自己数据集MAP为0;第二个部署tensorRTs时输出全为0。第一个问题参考官方提供的加载预训练权重很容易解决,第二个问题部署tensorRT输出全为0的问题,网上资料很少,困扰了很久,反反复复思考,是找到了一个解决方法,但后续又详细研究了一下detr,最终想到一个解决的输出全为0的新方法,不仅部署简单而且速度更快。趁着这两天有时间抓紧折腾一下rt-detr,本来想部署一下rt-detr-v3,奈何代码还没开源,那就折腾一下rt-detr-v2。

RT-DETRv2 tensorrt C++ 部署

【完整代码】

本示例中,包含完整的代码、模型、测试图片、测试结果。

TensorRT版本:TensorRT-8.6.1.6

rt-detrv2 训练

训练参考官方开源代码。

导出onnx模型

在官方导出onnx 的基础上进行简单的调整,这里不需要动态batch,也不需要进行解码到输入分辨率,进行了如下调整:

python 复制代码
        def forward(self, images, orig_target_sizes):
            outputs = self.model(images)
            # outputs = self.postprocessor(outputs, orig_target_sizes)
            outputs = torch.sigmoid(outputs['pred_logits']), outputs['pred_boxes']
            return outputs


    model = Model()
    data = torch.rand(1, 3, 640, 640)

    torch.onnx.export(
        model, 
        data,
        args.output_file,
        input_names=['images'],
        output_names=['output1', 'output2'],
        opset_version=16, 
        verbose=False,
        do_constant_folding=True,
    )

最终导出的onnx结构如下:

onnx 运行结果

onnx 测试脚本【链接】

TensorRT C++ 部署

tensorrt 环境搭建参考官方文档,主要版本和cuda匹配。

1、修改Tensorrt使用版本

2、修改代码中模型对应的路径

3、编译运行

shellpower 复制代码
# 编译
cd RT-DETRv2_TensorRT_Cplusplus
mkdir build
cd build
cmake ..
make


# 运行
./detr_trt

tensorrt 运行结果

特别说明:本示例用fp16精度掉的非常多,默认使用的fp32。

运行时耗

本示例使用的是 rtdetrv2_r18vd_120e_coco.yml 模型,模型输入分别率640x640,显卡rtx4090,cuda12.5,fp32。

待解决问题

用FP16精度丢的很严重,目前还不知道为啥。

相关推荐
飞哥数智坊1 分钟前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏29 分钟前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉1 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01071 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
nonono1 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络
小艳加油2 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
AKAMAI2 小时前
AI需要防火墙,云计算需要重新构想
人工智能·云原生·云计算
钢铁男儿3 小时前
如何构建一个神经网络?从零开始搭建你的第一个深度学习模型
人工智能·深度学习·神经网络