基于yolov8的驾驶员疲劳驾驶检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

基于yolov8的驾驶员疲劳驾驶检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili

(一)简介

基于yolov8的驾驶员疲劳驾驶检测系统是在 PyTorch 框架之下得以实现的。这是一个完备的项目,涵盖了诸多方面,其中包括代码部分,精心整理的数据集,训练完备的模型权重,详实的模型训练记录,直观友好的 UI 界面以及各类重要的模型指标(如准确率、精确率、召回率等等)。

该系统的 UI 界面是通过 tkinter 设计并成功实现的。该项目可在windows、linux(ubuntu,centos)、mac系统下运行,可外接usb摄像头或直接用笔记本摄像头实现摄像实时检测。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

windows保姆级的pycharm+anaconda搭建python虚拟环境_anaconda和pycharm保姆级下载及配置-CSDN博客

在Linux系统(Ubuntn, Centos)用pycharm+anaconda搭建python虚拟环境_linux pycharm-CSDN博客

(二)项目介绍

1. 项目结构
2.模型训练、验证

​该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:修改data/data.yaml中的数据集路径

第二步:模型训练,即运行train.py文件

第三步:模型验证,当模型训练完后,运行val.py文件

第四步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集

​​​

部分数据展示:

​​

3.GUI界面(技术栈:pyqt5+python)
a.GUI初始界面
b.图像检测界面
c.视频或摄像实时检测界面

4.模型训练和验证的一些指标及效果

(三)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标等 。

整套全部资料,一步到位,省心省力。

若项目使用过程中出现问题,请及时交流!

相关推荐
共享家95271 小时前
搭建 AI 聊天机器人:”我的人生我做主“
前端·javascript·css·python·pycharm·html·状态模式
Hgfdsaqwr2 小时前
Python在2024年的主要趋势与发展方向
jvm·数据库·python
一晌小贪欢3 小时前
Python 测试利器:使用 pytest 高效编写和管理单元测试
python·单元测试·pytest·python3·python测试
小文数模3 小时前
2026年美赛数学建模C题完整参考论文(含模型和代码)
python·数学建模·matlab
Halo_tjn3 小时前
基于封装的专项 知识点
java·前端·python·算法
Hgfdsaqwr3 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
weixin_395448913 小时前
export_onnx.py_0130
pytorch·python·深度学习
s1hiyu3 小时前
使用Scrapy框架构建分布式爬虫
jvm·数据库·python
2301_763472463 小时前
使用Seaborn绘制统计图形:更美更简单
jvm·数据库·python
无垠的广袤4 小时前
【VisionFive 2 Lite 单板计算机】边缘AI视觉应用部署:缺陷检测
linux·人工智能·python·opencv·开发板