目录

基于yolov8的驾驶员疲劳驾驶检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

基于yolov8的驾驶员疲劳驾驶检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili

(一)简介

基于yolov8的驾驶员疲劳驾驶检测系统是在 PyTorch 框架之下得以实现的。这是一个完备的项目,涵盖了诸多方面,其中包括代码部分,精心整理的数据集,训练完备的模型权重,详实的模型训练记录,直观友好的 UI 界面以及各类重要的模型指标(如准确率、精确率、召回率等等)。

该系统的 UI 界面是通过 tkinter 设计并成功实现的。该项目可在windows、linux(ubuntu,centos)、mac系统下运行,可外接usb摄像头或直接用笔记本摄像头实现摄像实时检测。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

windows保姆级的pycharm+anaconda搭建python虚拟环境_anaconda和pycharm保姆级下载及配置-CSDN博客

在Linux系统(Ubuntn, Centos)用pycharm+anaconda搭建python虚拟环境_linux pycharm-CSDN博客

(二)项目介绍

1. 项目结构
2.模型训练、验证

​该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:修改data/data.yaml中的数据集路径

第二步:模型训练,即运行train.py文件

第三步:模型验证,当模型训练完后,运行val.py文件

第四步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集

​​​

部分数据展示:

​​

3.GUI界面(技术栈:pyqt5+python)
a.GUI初始界面
b.图像检测界面
c.视频或摄像实时检测界面

4.模型训练和验证的一些指标及效果

(三)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标等 。

整套全部资料,一步到位,省心省力。

若项目使用过程中出现问题,请及时交流!

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
五指山西9 分钟前
异步框架使用loguru和contextvars实现日志按Id输出
python
小宁爱Python10 分钟前
Python从入门到精通4:计算机网络及TCP网络应用程序开发入门指南
网络·python·tcp/ip·计算机网络
thinkMoreAndDoMore18 分钟前
深度学习处理文本(5)
人工智能·python·深度学习
Niuguangshuo27 分钟前
Python 设计模式:外观模式
python·设计模式·外观模式
矩阵猫咪30 分钟前
基于时间卷积网络TCN实现电力负荷多变量时序预测(PyTorch版)
pytorch·深度学习·tcn·时序预测·时间卷积网络·电力负荷
wgc2k1 小时前
吴恩达深度学习复盘(6)神经网络的矢量化原理
python·深度学习·矩阵
?Agony1 小时前
P17_ResNeXt-50
人工智能·pytorch·python·算法
Ronin-Lotus1 小时前
深度学习篇---模型训练早停机制
人工智能·pytorch·深度学习·模型训练·过拟合·早停
浪淘沙jkp2 小时前
大模型学习四:‌DeepSeek Janus-Pro 多模态理解和生成模型 本地部署指南(折腾版)
python·学习·deepseek
yolo大师兄2 小时前
【YOLO系列(V5-V12)通用数据集-火灾烟雾检测数据集】
人工智能·深度学习·yolo·目标检测·机器学习