理解LSTM

如何从RNN起步,一步一步通俗理解LSTM
Understanding LSTM Networks
LSTM-from-scratch-in-Pytorch
LSTM Neural Network from Scratch
Implementing a LSTM from scratch with Numpy

这张图就是最常见的LSTM结构图,但是隐藏了很多细节。下面这张图是一个LSTM模块的细节放大图:

图中:

  • 绿色的是长期记忆 long-term memory;

  • 玫瑰红色?的是短期记忆 short term memory;

  • 灰色的线是当前的输入x;

  • 每个蓝色的方框代表sigmoid函数,输出值在 0 到 1 之间,作为权重,控制信息的流动;

  • 每个橘色的方框代表tanh函数,输出值在 -1 到 1 之间,更好的编码信息,并且保持数据的中心化;

  • 第一个浅蓝色的虚线框,代表记忆门或遗忘门 ,一体两面,都是一回事,给重要的需要记忆的高权重,给不重要的需要忘记的低权重。用来计算长期记忆中如何向下一步传递信息。公式中x是当前输入,h是短期记忆,c是长期记忆。

  • 第二个浅绿色的虚线框,是输入门 ,是当前要加入到长期记忆中的信息的权重,

  • 第三个浅黄色虚线框,是当前需要加入到长期记忆中的信息,包括短期记忆和当前输入,和权重相乘后加入到长期记忆中。

  • 第四个浅紫色的虚线框,是输出门 ,是当前处理过的长期记忆(update long-term memory)中要输出的信息的权重。

  • 第五个浅红色虚线框,是当前处理过的长期记忆(update long-term memory)经过tanh激活后,变为当前潜在要输出的短期记忆,乘以前一个输出的权重,得到新的短期记忆输出。

一个完整的计算过程 ,pytorch中的LSTM函数。

总结:

  1. 长期记忆要经过记忆门(乘以权重),决定要传播的信息;
  2. 短期记忆以及当前输入,要经过激活,再经过输入门(乘以权重),决定要加入到长期记忆中传播的信息;
  3. 经过了前两步的长期记忆,经过激活,再经过输出门(乘以权重),得到最终的短期记忆输出;
  4. 每个门,也就是权重,输入都包括短期记忆和当前输入两部分,使用sigmoid函数激活;
  5. 每个加入的信息,使用tanh函数激活。
python 复制代码
import torch
import torch.nn as nn

rnn = nn.LSTM(input_size=10, hidden_size=20, num_layers=2)
#默认batch_first=False,所以输入是(length,batch_size,input_size)
input = torch.randn(5, 3, 10)
#短期记忆,(num_layers,batch_size,hidden_size)
h0 = torch.randn(2, 3, 20)
#长期记忆,(num_layers,batch_size,hidden_size)
c0 = torch.randn(2, 3, 20)
output, (hn, cn) = rnn(input, (h0, c0))
#输出,(length,batch_size,hidden_size)
output.shape
#torch.Size([5, 3, 20])
相关推荐
中杯可乐多加冰5 分钟前
基于 DeepSeek + MateChat 的证券智能投顾技术实践:打造金融领域的专属大Q模型助手
前端·人工智能
deephub9 分钟前
从零开始:用Python和Gemini 3四步搭建你自己的AI Agent
人工智能·python·大语言模型·agent
算家计算18 分钟前
DeepSeek开源IMO金牌模型!跑出数学推理新高度,你的算力准备好了吗?
人工智能·资讯·deepseek
Codebee22 分钟前
SOLO+OODER全栈框架:图生代码与组件化重构实战指南
前端·人工智能
腾讯云开发者30 分钟前
AI 时代,职场不慌!前快狗打车CTO沈剑来支招
人工智能
合方圆~小文35 分钟前
球型摄像机作为现代监控系统的核心设备
java·数据库·c++·人工智能
AI_56781 小时前
AI无人机如何让安全隐患无处遁形
人工智能·无人机
机器之心1 小时前
DeepSeek强势回归,开源IMO金牌级数学模型
人工智能·openai
机器之心1 小时前
华为放出「准万亿级MoE推理」大招,两大杀手级优化技术直接开源
人工智能·openai
大力财经1 小时前
零跑Lafa5正式上市 以“五大硬核实力”开启品牌个性化新篇章
人工智能