理解LSTM

如何从RNN起步,一步一步通俗理解LSTM
Understanding LSTM Networks
LSTM-from-scratch-in-Pytorch
LSTM Neural Network from Scratch
Implementing a LSTM from scratch with Numpy

这张图就是最常见的LSTM结构图,但是隐藏了很多细节。下面这张图是一个LSTM模块的细节放大图:

图中:

  • 绿色的是长期记忆 long-term memory;

  • 玫瑰红色?的是短期记忆 short term memory;

  • 灰色的线是当前的输入x;

  • 每个蓝色的方框代表sigmoid函数,输出值在 0 到 1 之间,作为权重,控制信息的流动;

  • 每个橘色的方框代表tanh函数,输出值在 -1 到 1 之间,更好的编码信息,并且保持数据的中心化;

  • 第一个浅蓝色的虚线框,代表记忆门或遗忘门 ,一体两面,都是一回事,给重要的需要记忆的高权重,给不重要的需要忘记的低权重。用来计算长期记忆中如何向下一步传递信息。公式中x是当前输入,h是短期记忆,c是长期记忆。

  • 第二个浅绿色的虚线框,是输入门 ,是当前要加入到长期记忆中的信息的权重,

  • 第三个浅黄色虚线框,是当前需要加入到长期记忆中的信息,包括短期记忆和当前输入,和权重相乘后加入到长期记忆中。

  • 第四个浅紫色的虚线框,是输出门 ,是当前处理过的长期记忆(update long-term memory)中要输出的信息的权重。

  • 第五个浅红色虚线框,是当前处理过的长期记忆(update long-term memory)经过tanh激活后,变为当前潜在要输出的短期记忆,乘以前一个输出的权重,得到新的短期记忆输出。

一个完整的计算过程 ,pytorch中的LSTM函数。

总结:

  1. 长期记忆要经过记忆门(乘以权重),决定要传播的信息;
  2. 短期记忆以及当前输入,要经过激活,再经过输入门(乘以权重),决定要加入到长期记忆中传播的信息;
  3. 经过了前两步的长期记忆,经过激活,再经过输出门(乘以权重),得到最终的短期记忆输出;
  4. 每个门,也就是权重,输入都包括短期记忆和当前输入两部分,使用sigmoid函数激活;
  5. 每个加入的信息,使用tanh函数激活。
python 复制代码
import torch
import torch.nn as nn

rnn = nn.LSTM(input_size=10, hidden_size=20, num_layers=2)
#默认batch_first=False,所以输入是(length,batch_size,input_size)
input = torch.randn(5, 3, 10)
#短期记忆,(num_layers,batch_size,hidden_size)
h0 = torch.randn(2, 3, 20)
#长期记忆,(num_layers,batch_size,hidden_size)
c0 = torch.randn(2, 3, 20)
output, (hn, cn) = rnn(input, (h0, c0))
#输出,(length,batch_size,hidden_size)
output.shape
#torch.Size([5, 3, 20])
相关推荐
weixin_437497773 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端3 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat3 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技3 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪3 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子4 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z4 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人4 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风4 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
itwangyang5204 小时前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能