百度如何打造AI原生研发新范式?

👉点击即可下载《百度AI原生研发新范式实践》资料

2024年10月23-25日,2024 NJSD技术盛典暨第十届NJSD软件开发者大会、第八届IAS互联网架构大会在南京召开。本届大会邀请了工业界和学术界的专家,优秀的工程师和产品经理,以及其它行业领军人物,分享交流经验和心得。

**百度文心快码总经理,工程效能部总监臧志出席大会开幕式,并分享了《AI原生研发新范式的实践与思考》。**在大模型赋能下,研发过程正在发生一场深刻变革。面对这样的变革,如何在公司和行业中拥抱和落地,是百度一个重要的探索方向。

在本次大会上,臧志阐释了AI原生研发新范式的内涵,分享了从两个方面快速推动建设和落地的经验。一方面,是推进以数据+大模型为基础的研发方式,实现需求交付模式的变革,也称为AI换道交付。另一方面,是推进AI赋能和重构研发的全流程,实现生产力的倍增,称之为人机协同。

具体来看,以数据+大模型为基础的研发方式,将围绕着大模型作为核心的能力供给,通过Prompt工程和数据工程,来实现需求的交付。对于Promot工程来说,是通过改变自己,来适配和发掘大模型在目标任务上的表现,是大家最常用和首先应该使用的方式,也是百度各个应用侧最普及的方式。而数据工程,则比较复杂,在通过Prompt不容易达成目标任务效果的时候,则需要针对任务来准备数据,改变大模型,来支撑我们的能力。

想要在整个公司落地这套研发方式,需要有一整套体系来沉淀大家的实践经验,形成正向循环和平台化的效应。除了最基础的模型、模型服务、研发工具之外,更重要的是去挖掘和激发各个业务的实践,总结成为流程规范,通过平台化的方式来形成复制。如果实践成熟,会形成指南,如果公司对于指南的做法形成更为统一的看法,会做成规范。也就是通过实践+规范指南+工具平台,这一套组合,支撑和促进了公司内AI原生开发的大幅增长,以及效率的提升。从年初到现在,我们的应用数增加了76%,现在这类应用能占到公司整体应用的10%以上,超过50%的工程师开发过Prompt,在数据飞轮和数据流程上也实现了50%的提效。

臧志在阐释了AI原生研发新范式的具体内涵之后,也分享了百度在AI赋能研发领域的探索和实践经验。

AI赋能研发的领域最近非常热,行业大致会按照AI辅助的贡献来分为五个阶段。在一家企业落地,不是简单的一个阶段,而是复杂任务的组合,因此前面提到的几个阶段,会同时存在,共同推进。总结起来,这由两个要素来决定:一个是任务的复杂度,这包括任务的粒度有大有小,是否跟其他的代码库或系统有耦合。另一个因素,是人的参与方式,这包括以人为主到机器为主,更抽象的表达方式等等。

在这个过程中,我们发现研发智能化是所有研发团队的共识。通过智能化首先会提升效率,也会更容易的落地一些先进理念,比如测试左移等主张。每个研发团队也都会在这个共识下,去思考结合他们的研发场景,他们需要的更先进的基础设施是什么。所以,在一个企业的研发智能化落地过程中,如何调动和组织起各个团队的积极性至关重要。

**百度在智能编码领域已经探索了两年,文心快码已在公司内部被数万名工程师使用。**百度每天生成的代码中,有30%由文心快码生成,整体采纳率达46%,这一提效工具的应用令工程师整体提效达到12%。文心快码的应用不仅提高了研发效率,也显著提升了代码质量。在百度内部实践中,文心快码安全漏洞扫描准确率已超过95%,并有83%的扫描漏洞已被修复闭环。

同时,百度通过文心快码的内外部的实践经验,已经总结出一套标准化的落地流程以及最佳实践,通过实施人机协同原则和构建落地执行体系,促进企业工程文化的转变和数据驱动价值闭环。

除了帮助百度内部数万名工程师提升研发效率和质量之外,文心快码也已应用于吉利汽车、顺丰科技、方正证券、华农保险、喜马拉雅、同程旅行、名创优品、上海三菱电梯等万家企业客户,覆盖汽车、金融、物流、互联网、机械制造、软件服务、集成电路等行业领域。文心快码在企业的落地实践案例,也获得了权威机构的认可,成为行业最佳实践标杆应用

相关推荐
周杰伦_Jay2 分钟前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
SpikeKing4 分钟前
LLM - 大模型 ScallingLaws 的指导模型设计与实验环境(PLM) 教程(4)
人工智能·llm·transformer·plm·scalinglaws
编码浪子14 分钟前
Transformer的编码机制
人工智能·深度学习·transformer
IE0627 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
GIS数据转换器32 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
一水鉴天2 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
井底哇哇8 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证8 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩8 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控8 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉