深度学习-如何计算神经网络的输出?

给定一个包含输入层、隐藏层和输出层的神经网络架构,可以逐层推导出各节点的输出值。具体步骤如下:

  1. 输入层计算

    • 输入层有 3 个节点,编号为 1、2、3,输入向量为 x_1, x_2, x_3 。
    • 输入层节点的输出值直接就是输入向量,即: a1=x1,a2=x2,a3=x3
  2. 隐藏层节点计算

    • 隐藏层有 4 个节点,编号为 4、5、6、7。每个节点和输入层节点之间都有连接,并且每个连接具有对应的权重。
    • 以隐藏层节点 4 为例。该节点的输出值 a_4 由输入层节点 1、2、3 的输出值计算得到。具体地:。其中, w_{41}, w_{42}, w_{43} 分别为节点 4 与输入层节点 1、2、3 之间的权重, w_{4b} 是节点 4 的偏置项,σ是激活函数。
    • 同理,隐藏层其他节点的输出值分别为:
  3. 输出层节点计算

    • 输出层有 2 个节点,编号为 8 和 9。每个节点与隐藏层节点之间也有相应的权重。
    • 计算节点 8 的输出值 y_1 ,其与隐藏层节点 4、5、6、7 的输出值相连。输出值计算如下:其中, w_{84}, w_{85}, w_{86}, w_{87} 是节点 8 与隐藏层节点 4、5、6、7 之间的权重, w_{8b} 是节点 8 的偏置项。
    • 同理,节点 9 的输出值 y_2 为:
  4. 得到最终输出

    通过上述步骤,得到输出层所有节点的输出值 y_1, y_2 ,即为神经网络的最终输出向量。这一输出向量的维度取决于输出层神经元的个数。通过逐层传播,权重和偏置的调整最终确定了网络的输出。这种逐层连接计算正是反向传播算法(BP算法)的核心步骤。

相关推荐
码农三叔16 分钟前
(11-4-01)完整人形机器人的设计与实现案例:机器人的站立与行走
人工智能·嵌入式硬件·机器人·人机交互·人形机器人
大模型玩家七七17 分钟前
效果评估:如何判断一个祝福 AI 是否“走心”
android·java·开发语言·网络·人工智能·batch
OpenLoong 开源社区18 分钟前
开源发布 | 从青龙Nano到青龙Mini:共建开源生态,首次亮相产教融合场景
人工智能·开源
水木姚姚20 分钟前
AI编程画马(含AI辅助创作)
人工智能·ai编程
老纪的技术唠嗑局25 分钟前
uv × pyseekdb:把 RAG 环境与检索落地成本降到最低
人工智能
m0_6038887126 分钟前
Chatting with Images for Introspective Visual Thinking
人工智能·计算机视觉·ai·论文速览
肾透侧视攻城狮27 分钟前
《解码AI“乐高”:深入理解TensorFlow张量操作与广播机制》
深度学习·tensorflow 张量操作·张量 的基本特性·创建张量的常用方法·张量的基本操作·张量的广播机制·张量的聚合操作
MicRabbit27 分钟前
openClaw安装飞书插件|核心踩坑:spawn EINVAL 错误终极解决指南
人工智能
iqiu29 分钟前
自研第一个SKILL-openclaw入门
人工智能
码农三叔31 分钟前
(11-4-02)完整人形机器人的设计与实现案例:机器人跳跃
人工智能·算法·机器人·人机交互·人形机器人