深度学习-如何计算神经网络的输出?

给定一个包含输入层、隐藏层和输出层的神经网络架构,可以逐层推导出各节点的输出值。具体步骤如下:

  1. 输入层计算

    • 输入层有 3 个节点,编号为 1、2、3,输入向量为 x_1, x_2, x_3 。
    • 输入层节点的输出值直接就是输入向量,即: a1=x1,a2=x2,a3=x3
  2. 隐藏层节点计算

    • 隐藏层有 4 个节点,编号为 4、5、6、7。每个节点和输入层节点之间都有连接,并且每个连接具有对应的权重。
    • 以隐藏层节点 4 为例。该节点的输出值 a_4 由输入层节点 1、2、3 的输出值计算得到。具体地:。其中, w_{41}, w_{42}, w_{43} 分别为节点 4 与输入层节点 1、2、3 之间的权重, w_{4b} 是节点 4 的偏置项,σ是激活函数。
    • 同理,隐藏层其他节点的输出值分别为:
  3. 输出层节点计算

    • 输出层有 2 个节点,编号为 8 和 9。每个节点与隐藏层节点之间也有相应的权重。
    • 计算节点 8 的输出值 y_1 ,其与隐藏层节点 4、5、6、7 的输出值相连。输出值计算如下:其中, w_{84}, w_{85}, w_{86}, w_{87} 是节点 8 与隐藏层节点 4、5、6、7 之间的权重, w_{8b} 是节点 8 的偏置项。
    • 同理,节点 9 的输出值 y_2 为:
  4. 得到最终输出

    通过上述步骤,得到输出层所有节点的输出值 y_1, y_2 ,即为神经网络的最终输出向量。这一输出向量的维度取决于输出层神经元的个数。通过逐层传播,权重和偏置的调整最终确定了网络的输出。这种逐层连接计算正是反向传播算法(BP算法)的核心步骤。

相关推荐
sduwcgg6 分钟前
kaggle配置
人工智能·python·机器学习
DolphinScheduler社区7 分钟前
白鲸开源与亚马逊云科技携手推动AI-Ready数据架构创新
人工智能·科技·开源·aws·白鲸开源·whalestudio
欣然~36 分钟前
借助 OpenCV 和 PyTorch 库,利用卷积神经网络提取图像边缘特征
人工智能·计算机视觉
谦行1 小时前
工欲善其事,必先利其器—— PyTorch 深度学习基础操作
pytorch·深度学习·ai编程
xwz小王子1 小时前
Nature Communications 面向形状可编程磁性软材料的数据驱动设计方法—基于随机设计探索与神经网络的协同优化框架
深度学习
白熊1881 小时前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
nenchoumi31191 小时前
VLA 论文精读(十六)FP3: A 3D Foundation Policy for Robotic Manipulation
论文阅读·人工智能·笔记·学习·vln
后端小肥肠2 小时前
文案号搞钱潜规则:日入四位数的Coze工作流我跑通了
人工智能·coze
LCHub低代码社区2 小时前
钧瓷产业原始创新的许昌共识:技术破壁·产业再造·生态重构(一)
大数据·人工智能·维格云·ai智能体·ai自动化·大禹智库·钧瓷码
-曾牛2 小时前
Spring AI 快速入门:从环境搭建到核心组件集成
java·人工智能·spring·ai·大模型·spring ai·开发环境搭建