深度学习-如何计算神经网络的输出?

给定一个包含输入层、隐藏层和输出层的神经网络架构,可以逐层推导出各节点的输出值。具体步骤如下:

  1. 输入层计算

    • 输入层有 3 个节点,编号为 1、2、3,输入向量为 x_1, x_2, x_3 。
    • 输入层节点的输出值直接就是输入向量,即: a1=x1,a2=x2,a3=x3
  2. 隐藏层节点计算

    • 隐藏层有 4 个节点,编号为 4、5、6、7。每个节点和输入层节点之间都有连接,并且每个连接具有对应的权重。
    • 以隐藏层节点 4 为例。该节点的输出值 a_4 由输入层节点 1、2、3 的输出值计算得到。具体地:。其中, w_{41}, w_{42}, w_{43} 分别为节点 4 与输入层节点 1、2、3 之间的权重, w_{4b} 是节点 4 的偏置项,σ是激活函数。
    • 同理,隐藏层其他节点的输出值分别为:
  3. 输出层节点计算

    • 输出层有 2 个节点,编号为 8 和 9。每个节点与隐藏层节点之间也有相应的权重。
    • 计算节点 8 的输出值 y_1 ,其与隐藏层节点 4、5、6、7 的输出值相连。输出值计算如下:其中, w_{84}, w_{85}, w_{86}, w_{87} 是节点 8 与隐藏层节点 4、5、6、7 之间的权重, w_{8b} 是节点 8 的偏置项。
    • 同理,节点 9 的输出值 y_2 为:
  4. 得到最终输出

    通过上述步骤,得到输出层所有节点的输出值 y_1, y_2 ,即为神经网络的最终输出向量。这一输出向量的维度取决于输出层神经元的个数。通过逐层传播,权重和偏置的调整最终确定了网络的输出。这种逐层连接计算正是反向传播算法(BP算法)的核心步骤。

相关推荐
科技小E3 分钟前
口罩佩戴检测算法AI智能分析网关V4工厂/工业等多场景守护公共卫生安全
网络·人工智能
说私域8 分钟前
基于定制开发开源AI智能名片S2B2C商城小程序的首屏组件优化策略研究
人工智能·小程序·开源·零售
vlln13 分钟前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
GiantGo23 分钟前
信息最大化(Information Maximization)
深度学习·无监督学习·信息最大化
栗克38 分钟前
Halcon 图像预处理②
人工智能·计算机视觉·halcon
互联网全栈架构2 小时前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_465215792 小时前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_3 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q4 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910134 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn