深度学习-如何计算神经网络的输出?

给定一个包含输入层、隐藏层和输出层的神经网络架构,可以逐层推导出各节点的输出值。具体步骤如下:

  1. 输入层计算

    • 输入层有 3 个节点,编号为 1、2、3,输入向量为 x_1, x_2, x_3 。
    • 输入层节点的输出值直接就是输入向量,即: a1=x1,a2=x2,a3=x3
  2. 隐藏层节点计算

    • 隐藏层有 4 个节点,编号为 4、5、6、7。每个节点和输入层节点之间都有连接,并且每个连接具有对应的权重。
    • 以隐藏层节点 4 为例。该节点的输出值 a_4 由输入层节点 1、2、3 的输出值计算得到。具体地:。其中, w_{41}, w_{42}, w_{43} 分别为节点 4 与输入层节点 1、2、3 之间的权重, w_{4b} 是节点 4 的偏置项,σ是激活函数。
    • 同理,隐藏层其他节点的输出值分别为:
  3. 输出层节点计算

    • 输出层有 2 个节点,编号为 8 和 9。每个节点与隐藏层节点之间也有相应的权重。
    • 计算节点 8 的输出值 y_1 ,其与隐藏层节点 4、5、6、7 的输出值相连。输出值计算如下:其中, w_{84}, w_{85}, w_{86}, w_{87} 是节点 8 与隐藏层节点 4、5、6、7 之间的权重, w_{8b} 是节点 8 的偏置项。
    • 同理,节点 9 的输出值 y_2 为:
  4. 得到最终输出

    通过上述步骤,得到输出层所有节点的输出值 y_1, y_2 ,即为神经网络的最终输出向量。这一输出向量的维度取决于输出层神经元的个数。通过逐层传播,权重和偏置的调整最终确定了网络的输出。这种逐层连接计算正是反向传播算法(BP算法)的核心步骤。

相关推荐
Chase_______33 分钟前
AI提效指南:Nano Banana 生成精美PPT与漫画
人工智能·powerpoint
雨大王51235 分钟前
汽车产业供应链优化的可行策略及案例分析
人工智能·机器学习
梁辰兴39 分钟前
三星自研GPU剑指AI芯片霸权,2027年能否撼动英伟达?
人工智能·gpu·芯片·电子·ai芯片·三星·梁辰兴
吴佳浩7 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI7 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维8 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术8 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20238 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud8 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云9 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能