深度学习-如何计算神经网络的输出?

给定一个包含输入层、隐藏层和输出层的神经网络架构,可以逐层推导出各节点的输出值。具体步骤如下:

  1. 输入层计算

    • 输入层有 3 个节点,编号为 1、2、3,输入向量为 x_1, x_2, x_3 。
    • 输入层节点的输出值直接就是输入向量,即: a1=x1,a2=x2,a3=x3
  2. 隐藏层节点计算

    • 隐藏层有 4 个节点,编号为 4、5、6、7。每个节点和输入层节点之间都有连接,并且每个连接具有对应的权重。
    • 以隐藏层节点 4 为例。该节点的输出值 a_4 由输入层节点 1、2、3 的输出值计算得到。具体地:。其中, w_{41}, w_{42}, w_{43} 分别为节点 4 与输入层节点 1、2、3 之间的权重, w_{4b} 是节点 4 的偏置项,σ是激活函数。
    • 同理,隐藏层其他节点的输出值分别为:
  3. 输出层节点计算

    • 输出层有 2 个节点,编号为 8 和 9。每个节点与隐藏层节点之间也有相应的权重。
    • 计算节点 8 的输出值 y_1 ,其与隐藏层节点 4、5、6、7 的输出值相连。输出值计算如下:其中, w_{84}, w_{85}, w_{86}, w_{87} 是节点 8 与隐藏层节点 4、5、6、7 之间的权重, w_{8b} 是节点 8 的偏置项。
    • 同理,节点 9 的输出值 y_2 为:
  4. 得到最终输出

    通过上述步骤,得到输出层所有节点的输出值 y_1, y_2 ,即为神经网络的最终输出向量。这一输出向量的维度取决于输出层神经元的个数。通过逐层传播,权重和偏置的调整最终确定了网络的输出。这种逐层连接计算正是反向传播算法(BP算法)的核心步骤。

相关推荐
三万棵雪松几秒前
【AI小智后端部分(一)】
人工智能·python·ai小智
编程小Y1 分钟前
Adobe Animate 2024:2D 矢量动画与交互创作利器下载安装教程
人工智能
laplace01232 分钟前
Part 3:模型调用、记忆管理与工具调用流程(LangChain 1.0)笔记(Markdown)
开发语言·人工智能·笔记·python·langchain·prompt
mys55189 分钟前
杨建允:AI搜索优化对汽车服务行业获客的影响
人工智能·aigc·geo·ai搜索优化·ai引擎优化
2501_9361460413 分钟前
鱼类识别与分类:基于freeanchor_x101-32x4d_fpn_1x_coco的三种鱼类自动检测
人工智能·分类·数据挖掘
鲨莎分不晴13 分钟前
拯救暗淡图像:深度解析直方图均衡化(原理、公式与计算)
人工智能·算法·机器学习
好奇龙猫15 分钟前
【人工智能学习-AI-MIT公开课-10. 学习介绍、最近邻】
人工智能·学习
智算菩萨25 分钟前
2026马年新岁:拥抱智能时代,共谱科技华章
人工智能·科技
TTSOP跨境情报员27 分钟前
从内容到品牌:TikTok美国视频带货的品牌化路径与心智建设
人工智能·跨境电商·tiktok shop·品牌建设
微爱帮监所写信寄信37 分钟前
微爱帮监狱寄信写信工具照片高清处理技术架构
开发语言·人工智能·网络协议·微信·php