生物信息与机器学习6 - 有监督学习算法和无监督学习算法

1.有监督学习算法

有监督学习算法推荐:

决策树分类器 - 适合处理分类问题,容易理解和可视化;

KNN分类器 - 对于简单的单特征分类也很有效;

逻辑回归 (多分类) - 使用one-vs-all策略处理多类别。

有监督学习的选择:

如果数据分布比较简单,建议使用KNN;

如果需要清晰的决策边界,使用决策树;

如果数据呈现线性可分的特征,可以使用逻辑回归。

python 复制代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 生成示例数据
X = np.random.rand(100, 1) * 10  # 单特征数据
y = np.where(X < 2.5, 0,
        np.where(X < 5, 1,
            np.where(X < 7.5, 2, 3)))  # 4个类别

# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 1. 决策树
dt_clf = DecisionTreeClassifier()
dt_clf.fit(X_train, y_train)
dt_score = dt_clf.score(X_test, y_test)

# 2. KNN
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
knn_score = knn_clf.score(X_test, y_test)

# 3. 逻辑回归
lr_clf = LogisticRegression(multi_class='ovr')
lr_clf.fit(X_train, y_train)
lr_score = lr_clf.score(X_test, y_test)

print(f"决策树准确率: {dt_score:.3f}")
print(f"KNN准确率: {knn_score:.3f}")
print(f"逻辑回归准确率: {lr_score:.3f}")

2. 无监督学习算法

无监督学习算法推荐:

K-means聚类 - 最常用的聚类算法;

DBSCAN - 基于密度的聚类。

无监督学习选择:

如果类别数量已知(本例中是4个),推荐使用K-means;

如果类别数量未知,可以尝试使用DBSCAN。

python 复制代码
from sklearn.cluster import KMeans, DBSCAN
from sklearn.metrics import silhouette_score

# 使用数据为上述生成数据
# K-means聚类
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans_labels = kmeans.fit_predict(X)

# DBSCAN聚类
dbscan = DBSCAN(eps=0.5, min_samples=5)
dbscan_labels = dbscan.fit_predict(X)

# 计算轮廓系数
kmeans_silhouette = silhouette_score(X, kmeans_labels)
print(f"K-means轮廓系数: {kmeans_silhouette:.3f}")

# 可视化结果
plt.figure(figsize=(12, 4))

plt.subplot(121)
plt.scatter(X, np.zeros_like(X), c=kmeans_labels)
plt.title('K-means聚类结果')

plt.subplot(122)
plt.scatter(X, np.zeros_like(X), c=dbscan_labels)
plt.title('DBSCAN聚类结果')

plt.tight_layout()
plt.show()
相关推荐
小张学Python2 分钟前
AI数字人Heygem:口播与唇形同步的福音,无需docker,无需配置环境,一键整合包来了
python·数字人·heygem
跳跳糖炒酸奶6 分钟前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
绵绵细雨中的乡音21 分钟前
动态规划-第六篇
算法·动态规划
程序员黄同学30 分钟前
动态规划,如何应用动态规划解决实际问题?
算法·动态规划
步木木33 分钟前
Anaconda和Pycharm的区别,以及如何选择两者
ide·python·pycharm
星始流年34 分钟前
解决PyInstaller打包PySide6+QML应用的资源文件问题
python·llm·pyspider
南玖yy36 分钟前
Python网络爬虫:从入门到实践
爬虫·python
march_birds1 小时前
FreeRTOS 与 RT-Thread 事件组对比分析
c语言·单片机·算法·系统架构
The Future is mine1 小时前
Python计算经纬度两点之间距离
开发语言·python
斯汤雷1 小时前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化