【深度学习】CrossEntropyLoss需要手动softmax吗?

【深度学习】CrossEntropyLoss需要手动softmax吗?

问题:CrossEntropyLoss需要手动softmax吗?

之前用 pytorch 实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经 softmax激活层后再计算CrossEntropyLoss。

答案:不需要

调用了损失函数CrossEntropyLoss,最后一层是不需要再加softmax函数激活的。

官方文档

官方文档链接:pytorch-crossentropyloss相当于在输入上应用LogSoftmax,然后NLLLoss

代码解释

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

criterion = nn.CrossEntropyLoss()

# 模拟网络输出(未经过softmax)
logits = torch.tensor([[0.2447, 3, 1]], requires_grad=True)
# 模拟目标标签
target = torch.tensor([0])

# 使用Softmax + CrossEntropyLoss计算损失
softmax_layer = nn.Softmax(dim=1)
softmax_output = softmax_layer(logits)
loss_softmax_cross_entropy = criterion(softmax_output, target)
print("softmax + CrossEntropyLoss:", loss_softmax_cross_entropy.item())

# 直接使用CrossEntropyLoss计算损失
loss_cross_entropy = criterion(logits, target)
print("CrossEntropyLoss:", loss_cross_entropy.item())

# 使用LogSoftmax + NLLLoss计算损失
softmax_output = torch.softmax(logits, dim=1)
log_softmax_output = torch.log(softmax_output)
log_softmax_nll = F.nll_loss(log_softmax_output, target)
print("LogSoftmax + NLLLoss:", log_softmax_nll.item())
相关推荐
whitelbwwww16 分钟前
车牌识别--obb识别车框
人工智能
果粒蹬i20 分钟前
AI系统故障诊断:模型崩溃、算力瓶颈与数据漂移的识别与解决策略
人工智能
CCPC不拿奖不改名26 分钟前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
Coding茶水间29 分钟前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
飞Link29 分钟前
【论文笔记】《Deep Learning for Time Series Anomaly Detection: A Survey》
rnn·深度学习·神经网络·cnn·transformer
亿信华辰软件42 分钟前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
大模型实验室Lab4AI1 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
旷野说1 小时前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授1 小时前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
爱打代码的小林1 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉