【深度学习】CrossEntropyLoss需要手动softmax吗?

【深度学习】CrossEntropyLoss需要手动softmax吗?

问题:CrossEntropyLoss需要手动softmax吗?

之前用 pytorch 实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经 softmax激活层后再计算CrossEntropyLoss。

答案:不需要

调用了损失函数CrossEntropyLoss,最后一层是不需要再加softmax函数激活的。

官方文档

官方文档链接:pytorch-crossentropyloss相当于在输入上应用LogSoftmax,然后NLLLoss

代码解释

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

criterion = nn.CrossEntropyLoss()

# 模拟网络输出(未经过softmax)
logits = torch.tensor([[0.2447, 3, 1]], requires_grad=True)
# 模拟目标标签
target = torch.tensor([0])

# 使用Softmax + CrossEntropyLoss计算损失
softmax_layer = nn.Softmax(dim=1)
softmax_output = softmax_layer(logits)
loss_softmax_cross_entropy = criterion(softmax_output, target)
print("softmax + CrossEntropyLoss:", loss_softmax_cross_entropy.item())

# 直接使用CrossEntropyLoss计算损失
loss_cross_entropy = criterion(logits, target)
print("CrossEntropyLoss:", loss_cross_entropy.item())

# 使用LogSoftmax + NLLLoss计算损失
softmax_output = torch.softmax(logits, dim=1)
log_softmax_output = torch.log(softmax_output)
log_softmax_nll = F.nll_loss(log_softmax_output, target)
print("LogSoftmax + NLLLoss:", log_softmax_nll.item())
相关推荐
星纵物联几秒前
高精度人数统计传感器揭秘
人工智能·物联网·lora·智慧城市·lorawan
空白诗1 分钟前
昇腾 NPU 落地 Llama3-8B:模型获取到数学解题推理的全流程实战
人工智能·ai·语言模型·npu
Coovally AI模型快速验证1 分钟前
深度学习驱动的视频异常检测(VAD),AI如何让监控更智能?
人工智能·深度学习·目标检测·机器学习·自动驾驶·无人机
西西弗Sisyphus8 分钟前
最基础的神经网络可视化 包括源码
人工智能·深度学习·神经网络·mlp
建群新人小猿18 分钟前
陀螺匠企业助手 运行环境
java·大数据·人工智能·docker·php
renhongxia119 分钟前
基于多智能体深度强化学习的高炮反无人机算法
图像处理·人工智能·深度学习·无人机
wearegogog12321 分钟前
压缩感知和稀疏表示恢复算法中的L1同伦算法
人工智能·算法
阿水实证通24 分钟前
DoubleML+FLAML实现双重机器学习超参数的自动调优(python实现路径)
人工智能·python·机器学习·实证分析
容智信息25 分钟前
容智信息加入大模型产业联盟,Hyper Agent推动企业级智能体规模化落地
大数据·人工智能·自然语言处理·自动驾驶
core51227 分钟前
决策树 (Decision Tree):像“猜猜看”游戏一样的AI算法
人工智能·算法·决策树