地球上的中国:世界地图概览

目录

地理空间数据可视化

地理空间数据可视化涉及将含有地理定位信息的数据转换成图形或影像形式,以此增强数据的理解与解析。这一方法广泛应用于诸如都市策划、生态守护、危机应对及商业策略制定等领域。借助地理空间数据可视化,用户能够更加清晰地识别出数据的空间分布特征、演变趋势以及地域间的相互联系。

描绘地图

导入Python包

你可以使用命令行中的pip命令来安装和导入Python包,例如:

bash 复制代码
pip install pyecharts

执行该命令后,pyecharts包就会被下载并安装到你的Python环境中。安装完成后,你就可以在Python代码中使用import语句来导入这个包了:

python 复制代码
from pyecharts.charts import Map
from pyecharts import options as opts
java 复制代码
from pyecharts import options as opts
from pyecharts.charts import Map
data =[('黑龙江省',15),('新疆维吾尔自治区',25),('河南省',35),('湖北省',40)]
c =(
Map()
.add('test',data,'china', is_map_symbol_show=False)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
      title_opts= opts.TitleOpts(title="中国地图"),
      visualmap_opts =opts.VisualMapOpts(max_=50,min_=10,is_piecewise=False,
                                        ),
)
)
c.render_notebook()

安装后,你就可以直接在你的代码中引用这些包和模块了。

  1. 导入必要的模块:

    python 复制代码
    from pyecharts.charts import Map
    from pyecharts import options as opts

    这里导入了Map类和options模块,后者包含了配置图表所需的类。

  2. 创建地图实例:

    python 复制代码
    map_chart = (
        Map()
        ...
    )

    Map()创建了一个新的地图实例。

  3. 添加数据:

    python 复制代码
    .add(
        series_name="示例数据",
        data_pair=[("广东", 200), ("北京", 300), ("上海", 150)],
        maptype="china",
        is_map_symbol_show=False
    )

    使用.add()方法添加数据到地图中。series_name定义了该系列的名称,这将在图例中显示;data_pair是一个元组列表,每个元组包含地区名称和对应的数值;maptype指定了地图的类型;is_map_symbol_show控制是否显示地图上的符号标记。

  4. 设置全局配置项:

    python 复制代码
    .set_global_opts(
        title_opts=opts.TitleOpts(title="中国地图示例"),
        visualmap_opts=opts.VisualMapOpts(max_=300)
    )

    .set_global_opts()用于设置图表的全局配置,比如标题配置和视觉映射配置。在这个例子中,标题被设置为"中国地图示例",并且视觉映射的最大值被设置为300。

  5. 设置系列配置项:

    python 复制代码
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False)
    )

    .set_series_opts()用来设置特定于系列的配置项。在这个例子中,我们设置了标签选项,选择不显示标签。

  6. 渲染图表:

    python 复制代码
    map_chart.render("china_map_example.html")

    最后,使用render()方法将图表渲染成HTML文件,并保存为china_map_example.html。这个文件可以在任何Web浏览器中打开以查看最终的地图效果。

注意事项

视觉映射配置:s_piecewise参数控制视觉映射是否采用分段模式。当is_piecewise=False时,视觉映射会根据颜色渐变来表示数值大小,而当设置为True时,则可以自定义区间来实现分段颜色显示。

环境差异 :如果你不是在一个支持即时渲染的环境中工作,比如Jupyter Notebook,而是普通的Python脚本环境中,你需要使用c.render("china_map.html")来生成一个HTML文件,然后通过浏览器打开该文件来查看地图。

参数设置true

from pyecharts import options as opts

java 复制代码
from pyecharts.charts import Map


data = [('黑龙江省',15),('新疆维吾尔自治区',25),('河南省',35),('湖北省',40)]
c =(
    Map( )
.add('test',data,'china', is_map_symbol_show=True)
.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
.set_global_opts(
title_opts=opts.TitleOpts(title="中国地图"), # 标题文本
visualmap_opts=opts.VisualMapOpts(max_=50,min_=10,is_piecewise=True,
                                 ),
)
)

c.render_notebook()

自定义分段

java 复制代码
from pyecharts import options as opts

from pyecharts.charts import Map


data = [('黑龙江省',15),('新疆维吾尔自治区',25),('河南省',35),('湖北省',40)]
c =(
Map()
.add('test',data,'china', is_map_symbol_show=True)
.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
.set_global_opts(
title_opts=opts.TitleOpts(title="中国地图"),
visualmap_opts=opts.VisualMapOpts(max_=50,is_piecewise=True,
                
pieces=[{"max":10,"min": 0,"label":"0-10","color":"#FFE4E1"},
        {"max": 20,"min": 10,
         "label":"10-20" ,"color":"#F08080"},
{"max": 40,"min": 20,"label":"20-40","color":"#CD5C5C"},]
),
        )
        )

c.render_notebook()

设置分段数量

java 复制代码
from pyecharts import options as opts
from pyecharts.charts import Map


data =[('黑龙江省',15 ) ,('新疆维吾尔自治区',25),('河南省',35),('湖北省',40)]
c = (
Map()
.add('test',data,"china", is_map_symbol_show=True)
.set_series_opts(label_opts=opts.LabelOpts(is_show=True))
.set_global_opts(
title_opts=opts.TitleOpts(title="中国地图"), # 标题文本
visualmap_opts=opts.VisualMapOpts(max_=50,min_=0,
                                  is_piecewise=True,
                                  split_number=8 #表示图例所分的段数
                                 ),# max 最大数据范围# is piecewise是否为分段型
)
)
    # 在 Jupyter Notebook 中渲染图表
c.render_notebook()

绘制世界地图

java 复制代码
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker


country = ["China","Canada","Brazil","Russia" ,
           "United States","Africa","Germany"]
value  = [300, 100, 2000, 800, 10000, 400, 5000]
c =(
    Map()
    .add("",[list(z) for z in zip(country, value)], "world", is_map_symbol_show=True,)
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
       title_opts=opts.TitleOpts(title="世界地图"),
        visualmap_opts=opts.VisualMapOpts(max_=2000,)
    )
)

c.render_notebook()

总结

通过不同的可视化手段,能够清晰地识别出数据中的模式、趋势和异常值。如果对你有帮助,不忘三连哦

相关推荐
小爬菜5 分钟前
Django学习笔记(项目默认文件)-02
前端·数据库·笔记·python·学习·django
Channing Lewis35 分钟前
python生成随机字符串
服务器·开发语言·python
资深设备全生命周期管理1 小时前
以Python 做服务器,N Robot 做客户端,小小UI,拿捏
服务器·python·ui
洪小帅1 小时前
Django 的 `Meta` 类和外键的使用
数据库·python·django·sqlite
夏沫mds1 小时前
web3py+flask+ganache的智能合约教育平台
python·flask·web3·智能合约
去往火星2 小时前
opencv在图片上添加中文汉字(c++以及python)
开发语言·c++·python
Bran_Liu2 小时前
【LeetCode 刷题】栈与队列-队列的应用
数据结构·python·算法·leetcode
懒大王爱吃狼3 小时前
Python绘制数据地图-MovingPandas
开发语言·python·信息可视化·python基础·python学习
数据小小爬虫3 小时前
如何使用Python爬虫按关键字搜索AliExpress商品:代码示例与实践指南
开发语言·爬虫·python
martian6654 小时前
第17篇:python进阶:详解数据分析与处理
开发语言·python