基于深度学习的机器人智能控制算法 笔记

正解/逆解

求正解/逆解有现成的库,参考https://github.com/petercorke/robotics-toolbox-python,代码如下:

复制代码
import roboticstoolbox as rtb
import numpy as np
np.set_printoptions(precision=6, suppress=True)
robot = rtb.models.Panda()

qr = np.array([0, -0.3, 0, -2.2, 0, 2.0, np.pi / 4])
qz = np.zeros(7)

print("正解")
te = robot.fkine(qr)
print(te.data[0])

print("逆解")
# 可能存在多个逆解,若不设置seed, 多次执行返回的结果可能不一样
# q1 = robot.ikine_LM(te.data[0], q0=qz).q
q1 = robot.ikine_LM(te.data[0], q0=qz, seed=1234).q
print(q1)

# 检查逆解是否正确
assert np.allclose(te.data[0], robot.fkine(q1).data[0])

输出:

复制代码
正解
[[ 0.995004  0.        0.099833  0.484047]
 [ 0.       -1.       -0.       -0.      ]
 [ 0.099833  0.       -0.995004  0.41263 ]
 [ 0.        0.        0.        1.      ]]
逆解
[ 2.684527  0.329245 -2.734035 -2.197693  0.147658  1.990311  0.668895]

可视化也很方便

复制代码
robot.plot(qr, backend="swift", block=True)

输出:

STEP格式文件

可以将STEP格式转换为GLB格式,参考https://github.com/trimesh/cascadio,代码如下:

复制代码
import cascadio
cascadio.step_to_glb("wrist_mount.step", "wrist_mount.glb", 0.1, 0.5)

import trimesh
trimesh.load("wrist_mount.glb").show()

摄像头基础知识

焦点/焦距/视场角/光圈/景深/光学畸变,参考https://www.optmv.com/content/details113_4276.html

相关推荐
舒一笑27 分钟前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq1 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
自小吃多1 小时前
STC8H系列 驱动步进电机
笔记·单片机
红衣小蛇妖2 小时前
神经网络-Day45
人工智能·深度学习·神经网络
JoannaJuanCV2 小时前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer2 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor2 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
moxiaoran57533 小时前
uni-app学习笔记三十--request网络请求传参
笔记·学习·uni-app
浠寒AI4 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154465 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化