基于深度学习的机器人智能控制算法 笔记

正解/逆解

求正解/逆解有现成的库,参考https://github.com/petercorke/robotics-toolbox-python,代码如下:

复制代码
import roboticstoolbox as rtb
import numpy as np
np.set_printoptions(precision=6, suppress=True)
robot = rtb.models.Panda()

qr = np.array([0, -0.3, 0, -2.2, 0, 2.0, np.pi / 4])
qz = np.zeros(7)

print("正解")
te = robot.fkine(qr)
print(te.data[0])

print("逆解")
# 可能存在多个逆解,若不设置seed, 多次执行返回的结果可能不一样
# q1 = robot.ikine_LM(te.data[0], q0=qz).q
q1 = robot.ikine_LM(te.data[0], q0=qz, seed=1234).q
print(q1)

# 检查逆解是否正确
assert np.allclose(te.data[0], robot.fkine(q1).data[0])

输出:

复制代码
正解
[[ 0.995004  0.        0.099833  0.484047]
 [ 0.       -1.       -0.       -0.      ]
 [ 0.099833  0.       -0.995004  0.41263 ]
 [ 0.        0.        0.        1.      ]]
逆解
[ 2.684527  0.329245 -2.734035 -2.197693  0.147658  1.990311  0.668895]

可视化也很方便

复制代码
robot.plot(qr, backend="swift", block=True)

输出:

STEP格式文件

可以将STEP格式转换为GLB格式,参考https://github.com/trimesh/cascadio,代码如下:

复制代码
import cascadio
cascadio.step_to_glb("wrist_mount.step", "wrist_mount.glb", 0.1, 0.5)

import trimesh
trimesh.load("wrist_mount.glb").show()

摄像头基础知识

焦点/焦距/视场角/光圈/景深/光学畸变,参考https://www.optmv.com/content/details113_4276.html

相关推荐
冰西瓜60035 分钟前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术36 分钟前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技1 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路1 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟2 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆2 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站2 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats3 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星3 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器3 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游