Pandas相关性分析

1.相关性分析定义

在 Pandas 中,数据相关性分析是通过计算不同变量之间的相关系数来了解它们之间的关系。在 Pandas 中,数据相关性是一项重要的分析任务,它帮助我们理解数据中各个变量之间的关系。

2.使用 corr() 方法计算数据集中每列之间的关系

df.corr(method='pearson', min_periods=1)

(1)method (可选): 字符串类型,用于指定计算相关系数方法。默认是 'pearson',还可以选择 'kendall'(Kendall Tau 相关系数)或 'spearman'(Spearman 秩相关系数)。

(2)min_periods (可选): 表示计算相关系数时所需的最小观测值数量。默认值是 1,即只要有至少一个非空值就会进行计算。如果指定min_periods,并在某些列中的非空值数量小于该值,则相应列的相关系数将被设为 NaN。

(3)df.corr() 方法返回一个相关系数矩阵,矩阵的行和列对应数据框的列名,矩阵的元素是对应列之间的相关系数。

3.常见的相关性系数

(1)Pearson 相关系数: 皮尔逊相关系数,用于衡量两个变量间的线性关系强度和方向。取值范围在 -1 到 1 之间,-1 表示完全负相关,1 表示完全正相关,0 表示无线性相关。可以使用 corr() 方法计算数据框中各列之间的 Pearson 相关系数。

(2)Spearman 相关系数:即斯皮尔曼相关系数,是一种秩相关系数。用于衡量两个变量之间的单调关系,即不一定是线性关系。通过比较变量的秩次来计算相关性。使用 corr(method='spearman') 方法计算数据框中各列之间的 Spearman 相关系数。

4.Pearson 相关系数

数据集是线性相关的,因此 Pearson 相关系数矩阵对角线上的值为 1,而非对角线上的值为 -1 表示完全负相关。

import pandas as pd

# 创建一个示例数据框
data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}
df = pd.DataFrame(data)

# 计算 Pearson 相关系数
correlation_matrix = df.corr()
print(correlation_matrix)

5.Spearman秩相关系数

Spearman 相关系数矩阵的结果与 Pearson 相关系数矩阵相同,因为这两个变量之间是完全的单调负相关。

import pandas as pd

# 创建一个示例数据框
data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}
df = pd.DataFrame(data)

# 计算 Spearman 相关系数
spearman_correlation_matrix = df.corr(method='spearman')
print(spearman_correlation_matrix)

6.可视化相关性

使用 Python 的 Seaborn 库, Seaborn 是基于 Matplotlib 的数据可视化库,专注于统计图形的绘制,旨在简化数据可视化的过程。Seaborn 提供了简单高级接口,可以轻松绘制各种统计图形,包括散点图、折线图、柱状图、热图等,而且具有良好的美学效果。

!pip install seaborn
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 创建一个示例数据框
data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}
df = pd.DataFrame(data)

# 计算 Pearson 相关系数
correlation_matrix = df.corr()

# 使用热图可视化 Pearson 相关系数
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.show()
相关推荐
bst@微胖子29 分钟前
Python高级语法之selenium
开发语言·python·selenium
Luis Li 的猫猫1 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
查理零世2 小时前
【蓝桥杯集训·每日一题2025】 AcWing 6118. 蛋糕游戏 python
python·算法·蓝桥杯
魔尔助理顾问3 小时前
一个简洁高效的Flask用户管理示例
后端·python·flask
java1234_小锋3 小时前
一周学会Flask3 Python Web开发-request请求对象与url传参
开发语言·python·flask·flask3
木觞清3 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
鹿鸣悠悠4 小时前
第二月:学习 NumPy、Pandas 和 Matplotlib 是数据分析和科学计算的基础
学习·numpy·pandas
Java能学吗5 小时前
2.17学习总结
数据结构·学习
诚信爱国敬业友善6 小时前
常见排序方法的总结归类
开发语言·python·算法
靡不有初1116 小时前
CCF-CSP第31次认证第二题——坐标变换(其二)【NA!前缀和思想的细节,输出为0的常见原因】
c++·学习·ccfcsp