RGA DEMO 下部

复制代码
#加载llm模型通过ollama最好别用ollama我是没经济条件
from langchain_community.llms import Ollama
llm = Ollama(model="qwen1_5-4b-chat-q2_k")


#pip install langchain_ollama -i https://pypi.tuna.tsinghua.edu.cn/simple
#OllamaEmbeddings 要写地址本地也要写, Ollama_llm本地的不用写地址
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="lrs33/bce-embedding-base_v1",base_url="http://localhost:11434/")


#pip install -qU langchain-postgres -i https://pypi.tuna.tsinghua.edu.cn/simple
from langchain_postgres import PGVector
from langchain_postgres.vectorstores import PGVector

CONNECTION_STRING = "postgresql+psycopg2://postgres:qaz142434@192.168.159.130:5432/postgres"
# 矢量存储名
COLLECTION_NAME = "yaofang_test"
# 连接数据库创建"客户端"
vectorstore = PGVector(
    collection_name=COLLECTION_NAME,
    connection=CONNECTION_STRING,
    embeddings=embeddings,
)

#设置检索条件
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
# 一个对话模板,内含2个变量context和question
template = """根据以下上下文回答问题:
{context}
回答: {question}
"""
# 基于模板生成提示
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template(template)


# 生成输出解析器
from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()

# 将检索索引器和输入内容(问题)生成检索
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

#流式输出
for chunk in rag_chain.stream("java 共有多少种设计模式"):
    print(chunk, end="", flush=True)

输出结果:

此代码流程是:创建向量数据库客户端,连接对应表,设置检索问题向量距离最近的top回调数据,大语言模型推理答案流式输出。

结合这上下部简单的RGA demo 就完成了,当然距离真正的RGA 差十万八千里后续会基于这个骨架开发进一步功能至少提供个UI界面正在考虑使用javaAPI模式,还是python gradio方式好纠结。

相关推荐
大力水手(Popeye)1 分钟前
Pytorch——tensor
人工智能·pytorch·python
飞翔的佩奇4 小时前
【完整源码+数据集+部署教程】表盘指针检测系统源码和数据集:改进yolo11-CA-HSFPN
python·yolo·计算机视觉·数据集·yolo11·表盘指针检测
larance5 小时前
SQLAlchemy 的异步操作来批量保存对象列表
数据库·python
搏博5 小时前
基于Python3.10.6与jieba库的中文分词模型接口在Windows Server 2022上的实现与部署教程
windows·python·自然语言处理·flask·中文分词
lxmyzzs6 小时前
pyqt5无法显示opencv绘制文本和掩码信息
python·qt·opencv
萧鼎7 小时前
Python pyzmq 库详解:从入门到高性能分布式通信
开发语言·分布式·python
yujkss8 小时前
Python脚本每天爬取微博热搜-终版
开发语言·python
yzx9910138 小时前
小程序开发APP
开发语言·人工智能·python·yolo
飞翔的佩奇8 小时前
【完整源码+数据集+部署教程】二维码与查找模式检测系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·二维码与查找模式检测
大霞上仙8 小时前
实现自学习系统,输入excel文件,能学习后进行相应回答
python·学习·excel