RGA DEMO 下部

复制代码
#加载llm模型通过ollama最好别用ollama我是没经济条件
from langchain_community.llms import Ollama
llm = Ollama(model="qwen1_5-4b-chat-q2_k")


#pip install langchain_ollama -i https://pypi.tuna.tsinghua.edu.cn/simple
#OllamaEmbeddings 要写地址本地也要写, Ollama_llm本地的不用写地址
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="lrs33/bce-embedding-base_v1",base_url="http://localhost:11434/")


#pip install -qU langchain-postgres -i https://pypi.tuna.tsinghua.edu.cn/simple
from langchain_postgres import PGVector
from langchain_postgres.vectorstores import PGVector

CONNECTION_STRING = "postgresql+psycopg2://postgres:qaz142434@192.168.159.130:5432/postgres"
# 矢量存储名
COLLECTION_NAME = "yaofang_test"
# 连接数据库创建"客户端"
vectorstore = PGVector(
    collection_name=COLLECTION_NAME,
    connection=CONNECTION_STRING,
    embeddings=embeddings,
)

#设置检索条件
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
# 一个对话模板,内含2个变量context和question
template = """根据以下上下文回答问题:
{context}
回答: {question}
"""
# 基于模板生成提示
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template(template)


# 生成输出解析器
from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()

# 将检索索引器和输入内容(问题)生成检索
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

#流式输出
for chunk in rag_chain.stream("java 共有多少种设计模式"):
    print(chunk, end="", flush=True)

输出结果:

此代码流程是:创建向量数据库客户端,连接对应表,设置检索问题向量距离最近的top回调数据,大语言模型推理答案流式输出。

结合这上下部简单的RGA demo 就完成了,当然距离真正的RGA 差十万八千里后续会基于这个骨架开发进一步功能至少提供个UI界面正在考虑使用javaAPI模式,还是python gradio方式好纠结。

相关推荐
程序员miki4 分钟前
训练yolo11检测模型经验流程
python·yolo
夏了茶糜18 分钟前
Python中生成器表达式(generator expression)和列表推导式(list comprehension)的区别
python·列表推导式·生成器表达式
上天夭23 分钟前
补充提问(四)
windows·python
0xwang30 分钟前
【python01】搭建环境
python
人工智能AI技术42 分钟前
【Agent从入门到实践】31 工具调用的核心逻辑:Agent如何选择并执行工具
人工智能·python
木土雨成小小测试员1 小时前
Python测试开发之后端一
开发语言·数据库·人工智能·python·django·sqlite
黎子越1 小时前
python循环相关联系
开发语言·python·算法
小北方城市网1 小时前
Spring Cloud Gateway 进阶实战:自定义过滤器、动态路由与全链路日志监控
spring boot·python·rabbitmq·java-rabbitmq·数据库架构
副露のmagic1 小时前
更弱智的算法学习 day53
开发语言·python
Java程序员威哥1 小时前
SpringBoot多环境配置实战:从基础用法到源码解析与生产避坑
java·开发语言·网络·spring boot·后端·python·spring