sicp每日一题[2.63-2.64]

Exercise 2.63

Each of the following two procedures converts a binary tree to a list.

复制代码
(define (tree->list-1 tree)
  (if (null? tree)
      '()
      (append (tree->list-1 (left-branch tree))
              (cons (entry tree)
                    (tree->list-1
                     (right-branch tree))))))


(define (tree->list-2 tree)
  (define (copy-to-list tree result-list)
    (if (null? tree)
        result-list
        (copy-to-list (left-branch tree)
                      (cons (entry tree)
                            (copy-to-list
                             (right-branch tree)
                             result-list)))))
  (copy-to-list tree '()))

a. Do the two procedures produce the same result for every tree? If not, how do the results differ? What lists do the two procedures produce for the trees in Figure 2.16?

b. Do the two procedures have the same order of growth in the number of steps required to convert a balanced tree withn elements to a list? If not, which one grows more slowly?


a. 对于 图2.16 的三种形式,这两个函数执行的结果是相同的,如下所示:

复制代码
(define t1 (make-tree 3 (make-tree 1 '() '()) (make-tree 5 '() '())))
(define t2 (make-tree 9 '() (make-tree 11 '() '())))
(define test1 (make-tree 7 t1 t2))

(tree->list-1 test1)
(tree->list-2 test1)


(define t3 (make-tree 3 (make-tree 1 '() '()) '()))
(define t4 (make-tree 9 (make-tree 7 '() '()) (make-tree 11 '() '())))
(define test2 (make-tree 5 t3 t4))

(tree->list-1 test2)
(tree->list-2 test2)


(define t5 (make-tree 1 '() '()))
(define t6 (make-tree 7 (make-tree 5 '() '()) (make-tree 9 '() (make-tree 11 '() '()))))
(define test3 (make-tree 3 t5 t6))

(tree->list-1 test3)
(tree->list-2 test3)

; 结果如下
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)

b. 对于 tree->list-1,因为 append 需要花费线性时间,所以T(n) = 2 * T(n/2) + O(n/2),时间复杂度为 O(n * log n); 对于 tree->list-2,T(n) = 2*T(n/2) + O(1),时间复杂度为 O(n),第二个增长的慢一些。

Exercise 2.64

The following procedure list->tree converts an ordered list to a balanced binary tree. The helper procedure partial-tree takes as arguments an integer n and list of at least n elements

and constructs a balanced tree containing the firstn elements of the list. The result returned by partial-tree is a pair (formed with cons) whose car is the constructed tree and

whose cdr is the list of elements not included in the tree.

复制代码
(define (list->tree elements)
  (car (partial-tree elements (length elements))))
(define (partial-tree elts n)
  (if (= n 0)
      (cons '() elts)
      (let ((left-size (quotient (- n 1) 2)))
        (let ((left-result
               (partial-tree elts left-size)))
          (let ((left-tree (car left-result))
                (non-left-elts (cdr left-result))
                (right-size (- n (+ left-size 1))))
            (let ((this-entry (car non-left-elts))
                  (right-result
                   (partial-tree
                    (cdr non-left-elts)
                    right-size)))
              (let ((right-tree (car right-result))
                    (remaining-elts
                     (cdr right-result)))
                (cons (make-tree this-entry
                                 left-tree
                                 right-tree)
                      remaining-elts))))))))

a. Write a short paragraph explaining as clearly as you can how partial-tree works. Draw the tree produced by list->tree for the list (1 3 5 7 9 11).

b. What is the order of growth in the number of steps required by list->tree to convert a list ofn elements?


a. 这个函数首先取前 (n-1)/2 个元素作为树的左子树,取剩下的元素中第一个作为树的根,然后把剩下的元素作为右子树,对于每一个子树也采用同样的方法,最后把左子树、根和右子树拼起来作为返回结果的第一个元素。

结果如下所示:

b. partial-tree 每一次都把列表分成2个大概是 n/2 的新列表和中间的一个元素,然后再把他们拼成一颗树。所以 T(n) = 2T(n/2) + O(1),根据 Master theorem,a=2, b=2, f(n) = O(1) = O(n^0), 即 c=0.

则 T(n) = O(n),具体计算方法参考这篇维基百科

相关推荐
顾安r1 小时前
11.15 脚本算法 加密网页
服务器·算法·flask·html·同态加密
前端小L1 小时前
图论专题(四):DFS的“回溯”之舞——探寻「所有可能路径」
算法·深度优先·图论
司铭鸿1 小时前
数学图论的艺术:解码最小公倍数图中的连通奥秘
运维·开发语言·算法·游戏·图论
元亓亓亓2 小时前
LeetCode热题100--39. 组合总和
算法·leetcode·职场和发展
2401_841495642 小时前
【LeetCode刷题】找到字符串中所有字母异位词
数据结构·python·算法·leetcode·数组·滑动窗口·找到字符串中所有字母异位词
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——寻找数组的中心下标
算法·leetcode·职场和发展·结构与算法
py有趣2 小时前
LeetCode算法学习之鸡蛋掉落
学习·算法·leetcode
放羊郎2 小时前
机器人自主导航方案概述
人工智能·算法·机器人·slam·建图
冷徹 .2 小时前
Edu144 CD
c++·算法
一水鉴天3 小时前
整体设计 全面梳理复盘 之37 元级自动化引擎三体项目(Designer/Master/Transformer)划分确定 + 自用规划工具(增强版)
开发语言·算法·transformer·公共逻辑