sicp每日一题[2.63-2.64]

Exercise 2.63

Each of the following two procedures converts a binary tree to a list.

复制代码
(define (tree->list-1 tree)
  (if (null? tree)
      '()
      (append (tree->list-1 (left-branch tree))
              (cons (entry tree)
                    (tree->list-1
                     (right-branch tree))))))


(define (tree->list-2 tree)
  (define (copy-to-list tree result-list)
    (if (null? tree)
        result-list
        (copy-to-list (left-branch tree)
                      (cons (entry tree)
                            (copy-to-list
                             (right-branch tree)
                             result-list)))))
  (copy-to-list tree '()))

a. Do the two procedures produce the same result for every tree? If not, how do the results differ? What lists do the two procedures produce for the trees in Figure 2.16?

b. Do the two procedures have the same order of growth in the number of steps required to convert a balanced tree withn elements to a list? If not, which one grows more slowly?


a. 对于 图2.16 的三种形式,这两个函数执行的结果是相同的,如下所示:

复制代码
(define t1 (make-tree 3 (make-tree 1 '() '()) (make-tree 5 '() '())))
(define t2 (make-tree 9 '() (make-tree 11 '() '())))
(define test1 (make-tree 7 t1 t2))

(tree->list-1 test1)
(tree->list-2 test1)


(define t3 (make-tree 3 (make-tree 1 '() '()) '()))
(define t4 (make-tree 9 (make-tree 7 '() '()) (make-tree 11 '() '())))
(define test2 (make-tree 5 t3 t4))

(tree->list-1 test2)
(tree->list-2 test2)


(define t5 (make-tree 1 '() '()))
(define t6 (make-tree 7 (make-tree 5 '() '()) (make-tree 9 '() (make-tree 11 '() '()))))
(define test3 (make-tree 3 t5 t6))

(tree->list-1 test3)
(tree->list-2 test3)

; 结果如下
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)

b. 对于 tree->list-1,因为 append 需要花费线性时间,所以T(n) = 2 * T(n/2) + O(n/2),时间复杂度为 O(n * log n); 对于 tree->list-2,T(n) = 2*T(n/2) + O(1),时间复杂度为 O(n),第二个增长的慢一些。

Exercise 2.64

The following procedure list->tree converts an ordered list to a balanced binary tree. The helper procedure partial-tree takes as arguments an integer n and list of at least n elements

and constructs a balanced tree containing the firstn elements of the list. The result returned by partial-tree is a pair (formed with cons) whose car is the constructed tree and

whose cdr is the list of elements not included in the tree.

复制代码
(define (list->tree elements)
  (car (partial-tree elements (length elements))))
(define (partial-tree elts n)
  (if (= n 0)
      (cons '() elts)
      (let ((left-size (quotient (- n 1) 2)))
        (let ((left-result
               (partial-tree elts left-size)))
          (let ((left-tree (car left-result))
                (non-left-elts (cdr left-result))
                (right-size (- n (+ left-size 1))))
            (let ((this-entry (car non-left-elts))
                  (right-result
                   (partial-tree
                    (cdr non-left-elts)
                    right-size)))
              (let ((right-tree (car right-result))
                    (remaining-elts
                     (cdr right-result)))
                (cons (make-tree this-entry
                                 left-tree
                                 right-tree)
                      remaining-elts))))))))

a. Write a short paragraph explaining as clearly as you can how partial-tree works. Draw the tree produced by list->tree for the list (1 3 5 7 9 11).

b. What is the order of growth in the number of steps required by list->tree to convert a list ofn elements?


a. 这个函数首先取前 (n-1)/2 个元素作为树的左子树,取剩下的元素中第一个作为树的根,然后把剩下的元素作为右子树,对于每一个子树也采用同样的方法,最后把左子树、根和右子树拼起来作为返回结果的第一个元素。

结果如下所示:

b. partial-tree 每一次都把列表分成2个大概是 n/2 的新列表和中间的一个元素,然后再把他们拼成一颗树。所以 T(n) = 2T(n/2) + O(1),根据 Master theorem,a=2, b=2, f(n) = O(1) = O(n^0), 即 c=0.

则 T(n) = O(n),具体计算方法参考这篇维基百科

相关推荐
u01092727124 分钟前
C++中的模板方法模式
开发语言·c++·算法
重生之我是Java开发战士31 分钟前
【优选算法】滑动窗口:长度最小的子数组,无重复字符的最长子串,最大连续1的个数,将x减到0的最小操作数,水果成篮,异位词,串联所有单词的子串,最小覆盖子串
算法
naruto_lnq1 小时前
C++与自动驾驶系统
开发语言·c++·算法
啊阿狸不会拉杆1 小时前
《数字信号处理》第6章:数字滤波器的基本概念及几种特殊滤波器
算法·matlab·信号处理·数字信号处理·dsp
放荡不羁的野指针1 小时前
leetcode150题-双指针
数据结构·算法·leetcode
好学且牛逼的马1 小时前
【Hot100|15-LeetCode 238. 除自身以外数组的乘积】
数据结构·算法·leetcode
Tisfy1 小时前
LeetCode 3651.带传送的最小路径成本:动态规划
算法·leetcode·动态规划·题解·排序
努力学习的小廉1 小时前
我爱学算法之—— 递归回溯综合(一)
算法·深度优先
m0_736919101 小时前
C++中的策略模式实战
开发语言·c++·算法
孞㐑¥2 小时前
算法—位运算
c++·经验分享·笔记·算法