sicp每日一题[2.63-2.64]

Exercise 2.63

Each of the following two procedures converts a binary tree to a list.

复制代码
(define (tree->list-1 tree)
  (if (null? tree)
      '()
      (append (tree->list-1 (left-branch tree))
              (cons (entry tree)
                    (tree->list-1
                     (right-branch tree))))))


(define (tree->list-2 tree)
  (define (copy-to-list tree result-list)
    (if (null? tree)
        result-list
        (copy-to-list (left-branch tree)
                      (cons (entry tree)
                            (copy-to-list
                             (right-branch tree)
                             result-list)))))
  (copy-to-list tree '()))

a. Do the two procedures produce the same result for every tree? If not, how do the results differ? What lists do the two procedures produce for the trees in Figure 2.16?

b. Do the two procedures have the same order of growth in the number of steps required to convert a balanced tree withn elements to a list? If not, which one grows more slowly?


a. 对于 图2.16 的三种形式,这两个函数执行的结果是相同的,如下所示:

复制代码
(define t1 (make-tree 3 (make-tree 1 '() '()) (make-tree 5 '() '())))
(define t2 (make-tree 9 '() (make-tree 11 '() '())))
(define test1 (make-tree 7 t1 t2))

(tree->list-1 test1)
(tree->list-2 test1)


(define t3 (make-tree 3 (make-tree 1 '() '()) '()))
(define t4 (make-tree 9 (make-tree 7 '() '()) (make-tree 11 '() '())))
(define test2 (make-tree 5 t3 t4))

(tree->list-1 test2)
(tree->list-2 test2)


(define t5 (make-tree 1 '() '()))
(define t6 (make-tree 7 (make-tree 5 '() '()) (make-tree 9 '() (make-tree 11 '() '()))))
(define test3 (make-tree 3 t5 t6))

(tree->list-1 test3)
(tree->list-2 test3)

; 结果如下
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)
'(1 3 5 7 9 11)

b. 对于 tree->list-1,因为 append 需要花费线性时间,所以T(n) = 2 * T(n/2) + O(n/2),时间复杂度为 O(n * log n); 对于 tree->list-2,T(n) = 2*T(n/2) + O(1),时间复杂度为 O(n),第二个增长的慢一些。

Exercise 2.64

The following procedure list->tree converts an ordered list to a balanced binary tree. The helper procedure partial-tree takes as arguments an integer n and list of at least n elements

and constructs a balanced tree containing the firstn elements of the list. The result returned by partial-tree is a pair (formed with cons) whose car is the constructed tree and

whose cdr is the list of elements not included in the tree.

复制代码
(define (list->tree elements)
  (car (partial-tree elements (length elements))))
(define (partial-tree elts n)
  (if (= n 0)
      (cons '() elts)
      (let ((left-size (quotient (- n 1) 2)))
        (let ((left-result
               (partial-tree elts left-size)))
          (let ((left-tree (car left-result))
                (non-left-elts (cdr left-result))
                (right-size (- n (+ left-size 1))))
            (let ((this-entry (car non-left-elts))
                  (right-result
                   (partial-tree
                    (cdr non-left-elts)
                    right-size)))
              (let ((right-tree (car right-result))
                    (remaining-elts
                     (cdr right-result)))
                (cons (make-tree this-entry
                                 left-tree
                                 right-tree)
                      remaining-elts))))))))

a. Write a short paragraph explaining as clearly as you can how partial-tree works. Draw the tree produced by list->tree for the list (1 3 5 7 9 11).

b. What is the order of growth in the number of steps required by list->tree to convert a list ofn elements?


a. 这个函数首先取前 (n-1)/2 个元素作为树的左子树,取剩下的元素中第一个作为树的根,然后把剩下的元素作为右子树,对于每一个子树也采用同样的方法,最后把左子树、根和右子树拼起来作为返回结果的第一个元素。

结果如下所示:

b. partial-tree 每一次都把列表分成2个大概是 n/2 的新列表和中间的一个元素,然后再把他们拼成一颗树。所以 T(n) = 2T(n/2) + O(1),根据 Master theorem,a=2, b=2, f(n) = O(1) = O(n^0), 即 c=0.

则 T(n) = O(n),具体计算方法参考这篇维基百科

相关推荐
youngee113 分钟前
hot100-41验证二叉搜索树
算法
迈巴赫车主5 分钟前
蓝桥杯20534爆破 java
java·数据结构·算法·职场和发展·蓝桥杯
坚持就完事了17 分钟前
数据结构之链表
数据结构·python·算法·链表
c#上位机32 分钟前
halcon图像去噪—均值滤波
图像处理·算法·均值算法·halcon
曾几何时`1 小时前
347. 前 K 个高频元素 分别使用sort和priority_queue 对哈希结构自定义排序
算法
小李小李快乐不已1 小时前
图论理论基础(3)
数据结构·c++·算法·图论
牙牙要健康1 小时前
【open3d】示例:自动计算点人脸点云模型面部朝向算法
人工智能·python·算法
youngee111 小时前
hot100-41二叉搜索树中第K小的元素
算法
mmz12072 小时前
双指针问题5(c++)
c++·算法
星空露珠2 小时前
lua获取随机颜色rgb转换hex
数据结构·数据库·算法·游戏·lua