Stable diffusion 3.5本地运行环境配置记录

1.环境配置

  • 创建虚环境

    bash 复制代码
    conda create -n sd3.5 python=3.10
  • Pytorch(>2.0)

    bash 复制代码
    conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=12.1 -c pytorch -c nvidia
  • Jupyter能使用Anaconda虚环境

    bash 复制代码
    conda install ipykernel
    python -m ipykernel install --user --name sd3.5 --display-name "SD3.5"
  • 安装transformer和tokenizer

    bash 复制代码
    pip install transformers==4.38.2 
    pip install tokenizers==0.15.2
  • 安装最新版本的diffuser

    复制代码
    pip install -U diffusers
  • 安装量化库节约VRAM GPUs

    bash 复制代码
    pip install bitsandbytes
  • 安装sentencepiece

    bash 复制代码
    pip install sentencepiece
  • 根据项目需要安装其他库

    bash 复制代码
    pip install matplotlib
    pip install numpy==1.26.4    # 降级,否则有些时候会报错
    pip install accelerate
    pip install protobuf==3.19.0

    2.报错解决

如果报错:Exception: data did not match any variant of untagged enum PyPreTokenizerTypeWrapper at line 960 column 3

降级解决

复制代码
pip install transformers==4.38.2
pip install tokenizers==0.15.2

如果报错ValueError: Cannot instantiate this tokenizer from a slow version. If it's based on sentencepiece, make sure you have sentencepiece installed.

安装sentencepiece:

bash 复制代码
pip install sentencepiece

如果报错:ValueError: The current PyTorch version does not support the scaled_dot_product_attention function.

解决:安装高于Pytorch>2.0

如果报错:T5Converter requires the protobuf library but it was not found in your environment. Checkout the instructions on the

解决:

bash 复制代码
pip install protobuf==3.19.0

3.实测

  • 官网例子:
python 复制代码
local_path = "/home/aic/diffusion_models/stable-diffusion-3.5-large/"
pipe = StableDiffusion3Pipeline.from_pretrained(local_path, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")

image = pipe(
    "A capybara holding a sign that reads Hello World",
    num_inference_steps=28,
    guidance_scale=3.5,
).images[0]
image.save("capybara.png")
  • 自定义例子

    "一名古代风格的中国女学生坐在现代的计算机教室里面学习编程"

    prompts:"An ancient-style Chinese female student sitting in a modern computer classroom learning programming, focused eyes, traditional Hanfu attire, modern technology, code editor, keyboard, mouse, fusion of digital age and traditional aesthetics, rich in detail, high-definition quality."

python 复制代码
prompts="An ancient-style Chinese female student sitting in a modern computer classroom learning programming, focused eyes, traditional Hanfu attire, modern technology, code editor, keyboard, mouse, fusion of digital age and traditional aesthetics, rich in detail, high-definition quality."
image = pipe(
    prompt=prompt,
    num_inference_steps=28,
    guidance_scale=4.5,
    max_sequence_length=512,
).images[0]

image.save("girls.png")
plt.imshow(plt.imread("girls.png"))
plt.axis('off')  # 不显示坐标轴
display(plt.gcf())
相关推荐
无心水4 小时前
【Stable Diffusion 3.5 FP8】8、生产级保障:Stable Diffusion 3.5 FP8 伦理安全与问题排查
人工智能·python·安全·docker·stable diffusion·ai镜像开发·镜像实战开发
tap.AI5 小时前
(五)Stable Diffusion 3.5-LoRA 适配、ControlNet 与模型微调
人工智能·stable diffusion
想你依然心痛5 小时前
AI镜像开发实战:Stable Diffusion 3.5 FP8文生图技术深度解析与应用探索
人工智能·stable diffusion
weixin_402939991 天前
【大模型】stable-diffusion-3.0和3.5模型训练
深度学习·stable diffusion
tap.AI1 天前
(四)Stable Diffusion 3.5-WebUI Forge 与 SwarmUI 实战
stable diffusion
lbb 小魔仙1 天前
FP8赋能高效生成:Stable Diffusion 3.5架构解析与落地优化指南
stable diffusion·架构
xueyongfu2 天前
从Diffusion到VLA pi0(π0)
人工智能·算法·stable diffusion
AndrewHZ2 天前
【图像处理基石】[特殊字符]圣诞特辑:10+经典图像处理算法,让你的图片充满节日氛围感!
图像处理·人工智能·opencv·算法·计算机视觉·stable diffusion·节日氛围感
弓.长.2 天前
主流AI绘画工具技术对比:Stable Diffusion 3与Midjourney V6的架构差异解析
ai作画·stable diffusion·midjourney
tap.AI3 天前
(三)Stable Diffusion 3.5 与 ComfyUI
分布式·stable diffusion