深度学习炼丹心得

1.如果图像中出现大块的斑点,请检查上采样的过程,是否是使用了nn.convTranspose,连续的使用,而导致网络无法采集到全局信息而出现局部斑点。

改进方法:利用F.interpolate+conv2d配合取代原来的nn.convTranspose

2.如果图像的SSIM和PSNR参数一直处于很低的状态(SSIM远远小于90,PSNR远远小于40),则检查是否对图像数据进行归一化。

改进办法:对整个数据集进行最值寻找,然后进行归一化,具体的方法参考链接:

遍历整个文件夹中excel,寻找最值(归一化)-CSDN博客

PS:一定对寻找出的最值进行记录,因为后续需要反归一化

3.炼丹的过程中建议tensorboard和visdom两个图像可视化工具联合使用,以此明确是网络哪层的效果存在问题。

visdom使用时所遇的问题及解决方法_用visdom效果变差-CSDN博客

以上是目前对模型训练的心得,仅供参考

相关推荐
KKKlucifer4 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全4 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖5 小时前
这个Q3,百度开始AI
人工智能·百度
Leinwin5 小时前
微软与Anthropic深化战略合作,在Azure Foundry平台部署Claude系列AI模型
人工智能·microsoft·azure
Q***f6355 小时前
机器学习书籍
人工智能·机器学习
顾安r5 小时前
11.20 开源APP
服务器·前端·javascript·python·css3
小毅&Nora5 小时前
【AI微服务】【Spring AI Alibaba】 ① 技术内核全解析:架构、组件与无缝扩展新模型能力
人工智能·微服务·架构
D***t1315 小时前
DeepSeek模型在自然语言处理中的创新应用
人工智能·自然语言处理
WWZZ20255 小时前
快速上手大模型:深度学习10(卷积神经网络2、模型训练实践、批量归一化)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
萧鼎5 小时前
Python PyTesseract OCR :从基础到项目实战
开发语言·python·ocr