深度学习炼丹心得

1.如果图像中出现大块的斑点,请检查上采样的过程,是否是使用了nn.convTranspose,连续的使用,而导致网络无法采集到全局信息而出现局部斑点。

改进方法:利用F.interpolate+conv2d配合取代原来的nn.convTranspose

2.如果图像的SSIM和PSNR参数一直处于很低的状态(SSIM远远小于90,PSNR远远小于40),则检查是否对图像数据进行归一化。

改进办法:对整个数据集进行最值寻找,然后进行归一化,具体的方法参考链接:

遍历整个文件夹中excel,寻找最值(归一化)-CSDN博客

PS:一定对寻找出的最值进行记录,因为后续需要反归一化

3.炼丹的过程中建议tensorboard和visdom两个图像可视化工具联合使用,以此明确是网络哪层的效果存在问题。

visdom使用时所遇的问题及解决方法_用visdom效果变差-CSDN博客

以上是目前对模型训练的心得,仅供参考

相关推荐
wheeldown几秒前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11
YF云飞27 分钟前
数据仓库进化:Agent驱动数智化新范式
数据仓库·人工智能·ai
多打代码27 分钟前
2025.09.05 用队列实现栈 & 有效的括号 & 删除字符串中的所有相邻重复项
python·算法
@CLoudbays_Martin1134 分钟前
为什么动态视频业务内容不可以被CDN静态缓存?
java·运维·服务器·javascript·网络·python·php
ningmengjing_42 分钟前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
程序猿炎义1 小时前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
小陈phd1 小时前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
居然JuRan1 小时前
阿里云多模态大模型岗三面面经
人工智能
THMAIL1 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy1 小时前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科