数据结构之二叉树--前序,中序,后序详解(含源码)

二叉树

二叉树不能轻易用断言,因为树一定有空

二叉树链式结构的实现

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。

cs 复制代码
typedef int BTDataType;
typedef struct BinaryTreeNode
{
 BTDataType _data;
 struct BinaryTreeNode* _left;
 struct BinaryTreeNode* _right;
}BTNode;
BTNode* CreatBinaryTree()
{
 BTNode* node1 = BuyNode(1);
 BTNode* node2 = BuyNode(2);
 BTNode* node3 = BuyNode(3);
 BTNode* node4 = BuyNode(4);
 BTNode* node5 = BuyNode(5);
 BTNode* node6 = BuyNode(6);
 
 node1->_left = node2;
 node1->_right = node4;
 node2->_left = node3;
 node4->_left = node5;
 node4->_right = node6;
 return node1;
}

二叉树的遍历

前序、中序以及后序遍历

  1. 前序遍历 (Preorder Traversal 亦称先序遍历 )--- 访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历 (Inorder Traversal)------ 访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历 (Postorder Traversal)------ 访问根结点的操作发生在遍历其左右子树之后。
    由于被访问的结点必是某子树的根, 所以 N(Node )、 L(Left subtree )和 R(Right subtree )又可解释为 根,根的左子树和根的右子树 。 NLR 、 LNR 和 LRN 分别又称为先根遍历、中根遍历和后根遍历。
cs 复制代码
// 二叉树前序遍历
void PreOrder(BTNode* root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);

前序

递归图

中序

递归图

后序同理

cs 复制代码
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>


typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;

BTNode* BuyNode(BTDataType x)
{
	BTNode* node = (BTNode*)malloc(sizeof(BTNode));
	if (node == NULL)
	{
		perror("malloc fail");
		return NULL;
	}

	node->data = x;
	node->left = NULL;
	node->right = NULL;

	return node;
}

BTNode* CreatBinaryTree()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);
	BTNode* node7 = BuyNode(7);


	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;
	node5->left = node7;

	return node1;
}

void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	printf("%d ", root->data);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->data);
}

层序遍历

层序遍历 :除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1 ,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第 2 层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

cs 复制代码
// 层序遍历
void LevelOrder(BTNode* root);

计算二叉树高度

分析

cs 复制代码
int BTreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	int leftHeight = BTreeHeight(root->left);
	int rightHeight = BTreeHeight(root->right);

	return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}

计算结点个数

1

2递归求结点个数

cs 复制代码
//int size = 0;
//void BTreeSize(BTNode* root)
//{
//	if (root == NULL)
//		return;
//
//	++size;
//
//	BTreeSize(root->left);
//	BTreeSize(root->right);
//}

int BTreeSize(BTNode* root)
{
	/*if (root == NULL)
		return 0;

	return BTreeSize(root->left)
		+ BTreeSize(root->right)
		+ 1;*/

	return root == NULL ? 0 : BTreeSize(root->left)
							+ BTreeSize(root->right) + 1;
}

求叶子结点个数

cs 复制代码
// 求叶子节点的个数
int BTreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}

	if (root->left == NULL
		&& root->right == NULL)
	{
		return 1;
	}

	return BTreeLeafSize(root->left)
		+ BTreeLeafSize(root->right);
}

计算第k层结点个数

cs 复制代码
// 二叉树第k层结点个数
int BTreeLevelKSize(BTNode* root, int k)
{
	assert(k > 0);

	if (root == NULL)
		return 0;

	if (k == 1)
		return 1;

	return BTreeLevelKSize(root->left, k - 1)
		+ BTreeLevelKSize(root->right, k - 1);
}
相关推荐
二向箔reverse2 分钟前
机器学习算法核心总结
人工智能·算法·机器学习
猿究院--冯磊1 小时前
JVM垃圾收集器
java·jvm·算法
野犬寒鸦1 小时前
力扣hot100:最大子数组和的两种高效方法:前缀和与Kadane算法(53)
java·后端·算法
我家大宝最可爱2 小时前
动态规划:入门思考篇
算法·动态规划·代理模式
肉夹馍不加青椒2 小时前
第三十三天(信号量)
java·c语言·算法
古译汉书3 小时前
嵌入式-SPI番外之按钮驱动程序的编写-Day15
c语言·stm32·单片机·嵌入式硬件·mcu·算法
knd_max3 小时前
C语言:字符函数与字符串函数(1)
c语言
快去睡觉~3 小时前
力扣48:旋转矩阵
算法·leetcode·矩阵
卡洛斯(编程版5 小时前
(1) 哈希表全思路-20天刷完Leetcode Hot 100计划
python·算法·leetcode
444A4E6 小时前
深入理解Linux进程管理:从创建到替换的完整指南
linux·c语言·操作系统