二叉树
二叉树不能轻易用断言,因为树一定有空
二叉树链式结构的实现
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。
cs
typedef int BTDataType;
typedef struct BinaryTreeNode
{
BTDataType _data;
struct BinaryTreeNode* _left;
struct BinaryTreeNode* _right;
}BTNode;
BTNode* CreatBinaryTree()
{
BTNode* node1 = BuyNode(1);
BTNode* node2 = BuyNode(2);
BTNode* node3 = BuyNode(3);
BTNode* node4 = BuyNode(4);
BTNode* node5 = BuyNode(5);
BTNode* node6 = BuyNode(6);
node1->_left = node2;
node1->_right = node4;
node2->_left = node3;
node4->_left = node5;
node4->_right = node6;
return node1;
}
二叉树的遍历
前序、中序以及后序遍历
- 前序遍历 (Preorder Traversal 亦称先序遍历 )--- 访问根结点的操作发生在遍历其左右子树之前。
- 中序遍历 (Inorder Traversal)------ 访问根结点的操作发生在遍历其左右子树之中(间)。
- 后序遍历 (Postorder Traversal)------ 访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根, 所以 N(Node )、 L(Left subtree )和 R(Right subtree )又可解释为 根,根的左子树和根的右子树 。 NLR 、 LNR 和 LRN 分别又称为先根遍历、中根遍历和后根遍历。
cs
// 二叉树前序遍历
void PreOrder(BTNode* root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);
前序
递归图
中序
递归图
后序同理
cs
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
BTDataType data;
struct BinaryTreeNode* left;
struct BinaryTreeNode* right;
}BTNode;
BTNode* BuyNode(BTDataType x)
{
BTNode* node = (BTNode*)malloc(sizeof(BTNode));
if (node == NULL)
{
perror("malloc fail");
return NULL;
}
node->data = x;
node->left = NULL;
node->right = NULL;
return node;
}
BTNode* CreatBinaryTree()
{
BTNode* node1 = BuyNode(1);
BTNode* node2 = BuyNode(2);
BTNode* node3 = BuyNode(3);
BTNode* node4 = BuyNode(4);
BTNode* node5 = BuyNode(5);
BTNode* node6 = BuyNode(6);
BTNode* node7 = BuyNode(7);
node1->left = node2;
node1->right = node4;
node2->left = node3;
node4->left = node5;
node4->right = node6;
node5->left = node7;
return node1;
}
void PrevOrder(BTNode* root)
{
if (root == NULL)
{
printf("N ");
return;
}
printf("%d ", root->data);
PrevOrder(root->left);
PrevOrder(root->right);
}
void InOrder(BTNode* root)
{
if (root == NULL)
{
printf("N ");
return;
}
InOrder(root->left);
printf("%d ", root->data);
InOrder(root->right);
}
void PostOrder(BTNode* root)
{
if (root == NULL)
{
printf("N ");
return;
}
PostOrder(root->left);
PostOrder(root->right);
printf("%d ", root->data);
}
层序遍历
层序遍历 :除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1 ,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第 2 层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
cs
// 层序遍历
void LevelOrder(BTNode* root);
计算二叉树高度
分析
cs
int BTreeHeight(BTNode* root)
{
if (root == NULL)
return 0;
int leftHeight = BTreeHeight(root->left);
int rightHeight = BTreeHeight(root->right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
计算结点个数
1
2递归求结点个数
cs
//int size = 0;
//void BTreeSize(BTNode* root)
//{
// if (root == NULL)
// return;
//
// ++size;
//
// BTreeSize(root->left);
// BTreeSize(root->right);
//}
int BTreeSize(BTNode* root)
{
/*if (root == NULL)
return 0;
return BTreeSize(root->left)
+ BTreeSize(root->right)
+ 1;*/
return root == NULL ? 0 : BTreeSize(root->left)
+ BTreeSize(root->right) + 1;
}
求叶子结点个数
cs
// 求叶子节点的个数
int BTreeLeafSize(BTNode* root)
{
if (root == NULL)
{
return 0;
}
if (root->left == NULL
&& root->right == NULL)
{
return 1;
}
return BTreeLeafSize(root->left)
+ BTreeLeafSize(root->right);
}
计算第k层结点个数
cs
// 二叉树第k层结点个数
int BTreeLevelKSize(BTNode* root, int k)
{
assert(k > 0);
if (root == NULL)
return 0;
if (k == 1)
return 1;
return BTreeLevelKSize(root->left, k - 1)
+ BTreeLevelKSize(root->right, k - 1);
}