OpenCV Python 版使用教程(三)摄像头读取延迟解决方法

文章目录


一、上篇回顾

在上一篇中,简单介绍了如何使用 OpenCV 操作摄像头,本期来讲在摄像头读取时,可能会出现画面延迟的解决方法。

二、产生原因

OpenCV 在读取的时候,会将视频流放在缓冲区中,然后每次调用的时候,会从缓冲区内读取视频帧。虽然说大多数情况难以出现写入缓冲区远大于读取缓冲区的速度,但是当设备出现性能瓶颈,尤其是在 树莓派 等嵌入式设备中,容易出现CPU 瓶颈,从而引发问题。

三、解决方法

1. cap.grab() 方法

cpp 复制代码
virtual bool cv::VideoCapture::grab()

官网对于这个函数的描述如下:

The primary use of the function is in multi-camera environments, especially when the cameras do not have hardware synchronization. 
That is, you call VideoCapture::grab() for each camera and after that call the slower method VideoCapture::retrieve()
to decode and get frame from each camera. This way the overhead on demosaicing or motion jpeg
decompression etc. is eliminated and the retrieved frames from different cameras will be closer in time. 

从官网的描述来看,这个函数主要用在多个摄像机中,用于摄像头硬件同步,这个函数和 cap.retrieve() 配合使用。当然也可以使用 cap.read() 再次读取。

同时也可以进一步设置缓冲区的大小,代码如下:

python 复制代码
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)

在这里设置 Capture 的缓冲区大小为 1 帧。

2. 多线程法

python3 复制代码
import cv2
import threading

class VideoCaptureThread:
    def __init__(self, index=0):
        self.cap = cv2.VideoCapture(index)
        self.frame = None
        self.running = True
        self.lock = threading.Lock()
        self.thread = threading.Thread(target=self.update)
        self.thread.start()

    def update(self):
        while self.running:
            ret, frame = self.cap.read()
            if ret:
                with self.lock:  # 确保线程安全
                    self.frame = frame

    def read(self):
        with self.lock:  # 确保线程安全
            return self.frame

    def stop(self):
        self.running = False
        self.thread.join()
        self.cap.release()


# 使用示例
video_capture = VideoCaptureThread()

while True:
    frame = video_capture.read()
    if frame is not None:
        cv2.imshow('Frame', frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

video_capture.stop()
cv2.destroyAllWindows()

在本例中,读取视频帧放在了一个单独的线程,读取和处理分别单独运行,从而避免了两者速度不一致导致的读取延迟。


总结

本篇介绍了两种解决摄像头延迟的方法。在读取到图像后,接下来要做的就是图像处理了,下期将介绍图像的各种色彩空间。

相关推荐
CountingStars6193 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen11 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝16 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界24 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
黄公子学安全34 分钟前
Java的基础概念(一)
java·开发语言·python
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
程序员一诺1 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python
小木_.1 小时前
【Python 图片下载器】一款专门为爬虫制作的图片下载器,多线程下载,速度快,支持续传/图片缩放/图片压缩/图片转换
爬虫·python·学习·分享·批量下载·图片下载器
小陈phd2 小时前
OpenCV学习——图像融合
opencv·计算机视觉·cv
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai