Flink SQL

  1. 进入 JobManager 容器

    bash 复制代码
    docker exec -it 21442d9ca797 /bin/bash
  2. 启动 Flink 的 SQL 客户端

    bash 复制代码
    /opt/flink/bin/sql-client.sh embedded
  3. 尝试创建 Kafka 表

    在启动的 SQL 客户端中,尝试创建一个 Kafka 表,看看是否能够成功:

    sql 复制代码
    CREATE TABLE test_kafka_table (
        message STRING
    ) WITH (
        'connector' = 'kafka',
        'topic' = 'test_topic',
        'properties.bootstrap.servers' = '110.40.130.231:9092',
        'format' = 'json'
    );

    如果没有报错,说明 Kafka 连接器已成功加载。


以下是一个使用 Flink SQL 从 Kafka 读取数据、进行简单聚合计算、并将结果写入 MySQL 和 HDFS 的示例。这个示例假设你已经安装并配置好了 Flink、Kafka、MySQL 和 HDFS。

1. 从 Kafka 读取数据

首先,创建一个 Kafka 表来定义数据源。假设 Kafka 主题名为 user_behavior,包含用户行为数据,每条消息格式为 JSON,包含字段 user_id, item_id, category_id, behavior, ts (时间戳)。

sql 复制代码
CREATE TABLE user_behavior (
    user_id BIGINT,
    item_id BIGINT,
    category_id BIGINT,
    behavior STRING,
    ts TIMESTAMP(3),
    proctime AS PROCTIME(), -- 添加处理时间列
    WATERMARK FOR ts AS ts - INTERVAL '5' SECOND -- 设置水印,允许5秒延迟
) WITH (
    'connector' = 'kafka',
    'topic' = 'user_behavior',
    'properties.bootstrap.servers' = 'localhost:9092',
    'format' = 'json',
    'scan.startup.mode' = 'latest-offset'
);

2. 进行简单的聚合计算

接下来,对用户行为数据进行简单的聚合计算,例如按类别统计每分钟的行为次数。

sql 复制代码
CREATE VIEW behavior_count AS
SELECT
    category_id,
    TUMBLE_START(ts, INTERVAL '1' MINUTE) as window_start,
    COUNT(*) as behavior_count
FROM user_behavior
GROUP BY category_id, TUMBLE(ts, INTERVAL '1' MINUTE);

使用了 TUMBLE 函数来创建滚动窗口,按每分钟对数据进行分组,并计算每个类别的行为次数。

3. 将处理后的数据写入 MySQL

为了将上述聚合结果写入 MySQL,首先创建一个 MySQL 表。

sql 复制代码
CREATE TABLE behavior_summary (
    category_id BIGINT,
    window_start TIMESTAMP(3),
    behavior_count BIGINT,
    PRIMARY KEY (category_id, window_start) NOT ENFORCED
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://localhost:3306/mydatabase',
    'table-name' = 'behavior_summary',
    'username' = 'myuser',
    'password' = 'mypassword'
);

然后,可以INSERT INTO 语句将数据插入到 MySQL 表中。

sql 复制代码
INSERT INTO behavior_summary
SELECT * FROM behavior_count;

4. 将处理后的数据写入 HDFS

如果想将数据写入 HDFS,先创建一个 HDFS 表。

sql 复制代码
CREATE TABLE behavior_summary_hdfs (
    category_id BIGINT,
    window_start TIMESTAMP(3),
    behavior_count BIGINT
) WITH (
    'connector' = 'filesystem',
    'path' = 'hdfs://localhost:9000/user/flink/behavior_summary',
    'format' = 'csv'
);

接着,使用 INSERT INTO 语句将数据写入 HDFS。

sql 复制代码
INSERT INTO behavior_summary_hdfs
SELECT * FROM behavior_count;

总结

以上步骤展示了如何使用 Flink SQL 从 Kafka 读取数据、进行聚合计算,并将结果分别写入 MySQL 和 HDFS。这是一个基本的流程,根据实际需求,可以调整表结构、连接器配置以及 SQL 查询以适应不同的应用场景。

相关推荐
华农DrLai1 天前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
岁岁种桃花儿1 天前
Flink从入门到上天系列第一篇:搭建第一个Flink程序
大数据·linux·flink·数据同步
Hello.Reader1 天前
Flink ZooKeeper HA 实战原理、必配项、Kerberos、安全与稳定性调优
安全·zookeeper·flink
Hello.Reader1 天前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
Hello.Reader2 天前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
Hello.Reader2 天前
Flink Kubernetes HA(高可用)实战原理、前置条件、配置项与数据保留机制
贪心算法·flink·kubernetes
wending-Y2 天前
记录一次排查Flink一直重启的问题
大数据·flink
Hello.Reader2 天前
Flink 对接 Azure Blob Storage / ADLS Gen2:wasb:// 与 abfs://(读写、Checkpoint、插件与认证)
flink·flask·azure
Hello.Reader2 天前
Flink 文件系统通用配置默认文件系统与连接数限制实战
vue.js·flink·npm