【深度学习】梯度累加和直接用大的batchsize有什么区别

梯度累加与使用较大的batchsize有类似的效果,但是也有区别

1.内存和计算资源要求

  1. 梯度累加: 通过在多个小的mini-batch上分别计算梯度并累积,梯度累积不需要一次加载所有数据,因此显著减少了内存需求。这对于显存有限的设别尤为重要,因为直接使用较大的batchsize可能会导致内存溢出
  2. 大的batchsize: 直接使用较大的batchsize会同时将所有的数据加载到内存中,内存占用率显著提升

2. 参数更新频率

  1. 梯度累加: 虽然累加 N 个 mini-batch 才更新一次参数,但每个 mini-batch 的梯度都计算一次,因此更新频率相对较低。不过,这不会显著影响模型的效果,因为总的参数更新步数并未减少。
  2. 大 batchsize: 一次计算出全部数据的梯度,并立即更新参数。因此更新频率更高,但效果与累积更新基本一致

3. 结果相似度

理论上等效:梯度累加和直接使用大的 batch size 在数学上是等效的,最终效果类似。

4. 使用场景

梯度累加: 适合在内存受限情况下模拟大 batch 效果,或在分布式训练场景中应用
直接大 batchsize: 适合有充足内存的硬件设备,但灵活性不及梯度累加

5. 代码示例

python 复制代码
# 梯度累加
accumulation_steps = 4
optimizer.zero_grad()
for i, (inputs, labels) in enumerate(data_loader):
    outputs = model(inputs)
    loss = loss_fn(outputs, labels)
    loss.backward()

    if (i + 1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero_grad()
python 复制代码
# 大的batchsize
data_loader = DataLoader(dataset, batch_size=256) # 假设 256 是较大的 batch size
for inputs, labels in data_loader:
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = loss_fn(outputs, labels)
    loss.backward()
    optimizer.step()
相关推荐
其美杰布-富贵-李20 小时前
深度学习中的 tmux
服务器·人工智能·深度学习·tmux
LaughingZhu21 小时前
Product Hunt 每日热榜 | 2026-01-12
人工智能·经验分享·深度学习·神经网络·产品运营
不如自挂东南吱21 小时前
空间相关性 和 怎么捕捉空间相关性
人工智能·深度学习·算法·机器学习·时序数据库
长颈鹿仙女21 小时前
深度学习详解拟合,过拟合,欠拟合
人工智能·深度学习
知乎的哥廷根数学学派21 小时前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习
jjjddfvv21 小时前
超级简单启动llamafactory!
windows·python·深度学习·神经网络·微调·audiolm·llamafactory
A先生的AI之旅21 小时前
2025顶会TimeDRT快速解读
人工智能·pytorch·python·深度学习·机器学习
温柔只给梦中人21 小时前
深度学习:正则化
人工智能·深度学习
狮子座明仔21 小时前
DocDancer:北大联合腾讯提出端到端训练的文档问答Agent,将DocQA形式化为信息寻求过程
人工智能·深度学习·语言模型·自然语言处理
foundbug99921 小时前
MATLAB中实现信号迭代解卷积功能
开发语言·深度学习·matlab