【深度学习】梯度累加和直接用大的batchsize有什么区别

梯度累加与使用较大的batchsize有类似的效果,但是也有区别

1.内存和计算资源要求

  1. 梯度累加: 通过在多个小的mini-batch上分别计算梯度并累积,梯度累积不需要一次加载所有数据,因此显著减少了内存需求。这对于显存有限的设别尤为重要,因为直接使用较大的batchsize可能会导致内存溢出
  2. 大的batchsize: 直接使用较大的batchsize会同时将所有的数据加载到内存中,内存占用率显著提升

2. 参数更新频率

  1. 梯度累加: 虽然累加 N 个 mini-batch 才更新一次参数,但每个 mini-batch 的梯度都计算一次,因此更新频率相对较低。不过,这不会显著影响模型的效果,因为总的参数更新步数并未减少。
  2. 大 batchsize: 一次计算出全部数据的梯度,并立即更新参数。因此更新频率更高,但效果与累积更新基本一致

3. 结果相似度

理论上等效:梯度累加和直接使用大的 batch size 在数学上是等效的,最终效果类似。

4. 使用场景

梯度累加: 适合在内存受限情况下模拟大 batch 效果,或在分布式训练场景中应用
直接大 batchsize: 适合有充足内存的硬件设备,但灵活性不及梯度累加

5. 代码示例

python 复制代码
# 梯度累加
accumulation_steps = 4
optimizer.zero_grad()
for i, (inputs, labels) in enumerate(data_loader):
    outputs = model(inputs)
    loss = loss_fn(outputs, labels)
    loss.backward()

    if (i + 1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero_grad()
python 复制代码
# 大的batchsize
data_loader = DataLoader(dataset, batch_size=256) # 假设 256 是较大的 batch size
for inputs, labels in data_loader:
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = loss_fn(outputs, labels)
    loss.backward()
    optimizer.step()
相关推荐
baby_hua9 分钟前
20251011_Pytorch深度学习(快速预览)
人工智能·pytorch·深度学习
natide10 分钟前
词汇/表达差异-1-编辑距离-莱文斯坦距离-Levenshtein
人工智能·深度学习·自然语言处理·知识图谱
小白狮ww18 分钟前
abaqus 算例教程:考虑动水压力的 koyna 地震非线性动力响应分析
人工智能·深度学习·机器学习·abaqus·材料科学·工程模拟·混凝土抗震分析
小白狮ww25 分钟前
当 OCR 模型开始「理解整页文档」:HunyuanOCR 的端到端之路
人工智能·深度学习·机器学习·ocr·文字识别·文档处理·腾讯混元
2401_8414956437 分钟前
【自然语言处理】共生与引领:自然语言处理与人工智能的深度绑定与协同演进
人工智能·深度学习·自然语言处理·多模态·通用智能·规则驱动·认知智能
盼小辉丶42 分钟前
PyTorch实战(17)——神经风格迁移
pytorch·深度学习·风格迁移
Caesar Zou1 小时前
Cannot allocate memory——训练时视频解码为什么会内存越跑越大
人工智能·深度学习
BFT白芙堂1 小时前
Franka Research 3 进阶应用:基于神经网络的 ORACLE 交互控制策略深度解析
人工智能·深度学习·神经网络·oracle·机器人·人机交互·vr
لا معنى له6 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
Coding茶水间12 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉