[大模型]视频生成-Sora简析

参考资料:

Sora技术报告https://openai.com/index/video-generation-models-as-world-simulators/4分钟详细揭密!Sora视频生成模型原理https://www.bilibili.com/video/BV1AW421K7Ut

一、概述

相较于Gen-2、Stable Diffusion、Pika等生成模型的前辈,Sora有更出众的一镜到底能力(超过60s)。一镜到底的实现中,难点在于让模型正确的理解两帧之间的逻辑性,使生成的视频具备连贯性。

二、Diffusion模型

Diffusion(扩散 模型),会基于随机过程,从噪声图像中逐步祛除噪声来满足生成满足要求的图像。分为两个部分:前向扩散反向扩散

前向扩散 会将一张清晰的图像逐步添加噪声,生成一张充满噪声的图像。而反向扩散则会从一堆噪声中逐步生成一张符合要求的清晰图片。通过反复迭代训练,模型能更好的从噪声中重建高质量的图像数据。

三、Transformer模型

这里的Transformer主要用于进行文本生成,而非图像识别领域的特征提取。当使用文本作为输入时,连续的文本会被token化,拆分为数个单词并附加位置信息。

接下来token会被编码器(Encoder) 转换为更抽象的特征向量,而解码器(Decoder) 则会根据特征向量来生成目标序列。需要注意的是,解码器会同时将特征向量已生成的文本 作为输入以保证上下文的连贯性

四、Diffusion Transformer模型

Diffusion Transformer (DiT)模型借鉴了二、三的优势,为了保证生成内容的连贯性和一致性,Sora引入了时空patch 的概念。类似于Transformer中的token,将原始视频通过视觉编码器被压缩为一组低维度特征向量。

通过这种方式,模型可以同时关注视频中对象在++当前帧++ 中的空间位置 和++整个视频++ 中的时间位置

得益于视觉编码器的压缩,Sora可以很简单的在低维空间中进行训练。经过训练后,Sora会根据噪声patch提示词 生成清晰的patch 。但这个patch实际上也是一个无法被人理解的低维表示。需要++解码器++将其还原成视频。

相关推荐
لا معنى له2 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI4 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.6 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight6 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha6 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir6 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王7 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室8 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛118 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI8 小时前
RAG系列(一) 架构基础与原理
人工智能·架构