[大模型]视频生成-Sora简析

参考资料:

Sora技术报告https://openai.com/index/video-generation-models-as-world-simulators/4分钟详细揭密!Sora视频生成模型原理https://www.bilibili.com/video/BV1AW421K7Ut

一、概述

相较于Gen-2、Stable Diffusion、Pika等生成模型的前辈,Sora有更出众的一镜到底能力(超过60s)。一镜到底的实现中,难点在于让模型正确的理解两帧之间的逻辑性,使生成的视频具备连贯性。

二、Diffusion模型

Diffusion(扩散 模型),会基于随机过程,从噪声图像中逐步祛除噪声来满足生成满足要求的图像。分为两个部分:前向扩散反向扩散

前向扩散 会将一张清晰的图像逐步添加噪声,生成一张充满噪声的图像。而反向扩散则会从一堆噪声中逐步生成一张符合要求的清晰图片。通过反复迭代训练,模型能更好的从噪声中重建高质量的图像数据。

三、Transformer模型

这里的Transformer主要用于进行文本生成,而非图像识别领域的特征提取。当使用文本作为输入时,连续的文本会被token化,拆分为数个单词并附加位置信息。

接下来token会被编码器(Encoder) 转换为更抽象的特征向量,而解码器(Decoder) 则会根据特征向量来生成目标序列。需要注意的是,解码器会同时将特征向量已生成的文本 作为输入以保证上下文的连贯性

四、Diffusion Transformer模型

Diffusion Transformer (DiT)模型借鉴了二、三的优势,为了保证生成内容的连贯性和一致性,Sora引入了时空patch 的概念。类似于Transformer中的token,将原始视频通过视觉编码器被压缩为一组低维度特征向量。

通过这种方式,模型可以同时关注视频中对象在++当前帧++ 中的空间位置 和++整个视频++ 中的时间位置

得益于视觉编码器的压缩,Sora可以很简单的在低维空间中进行训练。经过训练后,Sora会根据噪声patch提示词 生成清晰的patch 。但这个patch实际上也是一个无法被人理解的低维表示。需要++解码器++将其还原成视频。

相关推荐
笨蛋不要掉眼泪7 分钟前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06169 分钟前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor19 分钟前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES35 分钟前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67891 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者1 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he1 小时前
esp32 arduino环境的搭建
人工智能
SmartBrain1 小时前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc
renhongxia11 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
民乐团扒谱机1 小时前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳