利用矩阵函数的导数公式求解一阶常系数微分方程组的解

考虑以下形式的线性常系数微分方程组:

其中, 是 n×1 的状态向量,A 是 n×n 的常系数矩阵。

步骤

  1. 特征值和特征向量 :求出矩阵 A 的特征值和特征向量。如果 A 是对角化的,那么可以将其对角化为 ,其中 D 是一个对角矩阵,包含 A 的特征值,P 包含对应的特征向量。

  2. 一般解的形式:由于矩阵微分方程的解可以写成矩阵指数的形式,所以解为

    其中,表示矩阵 A 的指数。

  3. 计算矩阵指数 : 对于对角化矩阵 A ,矩阵指数 可以写成

    其中是对角矩阵,每个元素为 是 A 的特征值)。

  4. 解的求得 :通过矩阵指数 和初始条件 x(0) 可以求得解 x(t) 。

注:的具体求法参考文章:求解矩阵函数值的方法

示例

假设有一个 2x2 的常系数矩阵微分方程:

步骤 1:求矩阵 A 的特征值和特征向量

给定矩阵为:

  1. 求特征值:特征值 λ 满足 det⁡(A−λI)=0 。

    解此方程得到特征值:

  2. 求特征向量

    对于 ,我们解

    这给出特征向量

    对于 ,我们解

    这给出特征向量

因此,矩阵 A 的特征值和特征向量分别为:

,

步骤 2:写出矩阵 P 和对角矩阵 D

将特征向量按列排成矩阵 P,则:

对角矩阵 D 包含特征值:

步骤 3:计算矩阵指数

由于,所以

首先,计算

然后求

因此,

进行矩阵乘法得到

步骤 4:写出通解

假设初始条件为 ,则解为

结论

通过矩阵指数的方法,我们得到了该微分方程组的通解:

相关推荐
Psycho_MrZhang7 小时前
高等数学基础(矩阵基本操作转置和逆矩阵)
线性代数·矩阵
狐凄8 小时前
Python实例题:Python计算线性代数
开发语言·python·线性代数
天宫风子8 小时前
线性代数小述(二之前)
线性代数
天宫风子20 小时前
线性代数小述(一)
线性代数·算法·矩阵·抽象代数
老歌老听老掉牙1 天前
使用 SymPy 进行向量和矩阵的高级操作
python·线性代数·算法·矩阵·sympy
fen_fen1 天前
学习笔记(25):线性代数,矩阵-矩阵乘法原理
笔记·学习·线性代数
luofeiju1 天前
矩阵QR分解
线性代数·算法
闻缺陷则喜何志丹1 天前
【分治法 容斥原理 矩阵快速幂】P6692 出生点|普及+
c++·线性代数·数学·洛谷·容斥原理·分治法·矩阵快速幂
程序员老周6661 天前
4.大语言模型预备数学知识
人工智能·神经网络·线性代数·自然语言处理·大语言模型·概率论·数学基础
luofeiju2 天前
行列式的性质
线性代数·算法·矩阵