【spark面试题】RDD和DataFrame以及DataSet有什么异同

RDD(Resilient Distributed Dataset):

  • 概念:可理解为分布式的列表。它的每个元素代表数据的一行,具有支持泛型这一显著特点。这种泛型支持让开发人员能够处理各种类型的数据,具有很强的灵活性。例如,在处理包含不同类型数据(如整数、字符串、自定义对象等)的数据集时,可以方便地在 RDD 中进行操作。

DataFrame:

  • 概念:它是一种分布式表,由数据和 Schema(模式)组成。
  • 特点:不支持泛型,其每行固定为 Row 类型。不过,它通过明确的模式定义,提供了更规范的数据处理方式。比如在数据查询、过滤和聚合操作中,可以利用列名和预定义的模式进行高效处理,这在处理大规模结构化数据时非常有用。

DataSet:

  • 概念:同样是分布式表,也由数据和 Schema 构成。
  • 特点:支持泛型,这一点和 RDD 类似,在保证数据类型安全的同时,兼具灵活性。开发人员可以更清晰地指定数据类型,在代码开发过程中能够减少类型相关的错误,并且在处理数据时,能更好地利用编译时的类型检查。而且在性能方面也表现出色,适用于大规模数据处理场景,比如在处理海量的用户信息数据时,可以更方便地处理不同类型的用户属性数据。
相关推荐
向量引擎小橙25 分钟前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
飞Link37 分钟前
【大数据】SparkSQL常用操作
大数据·数据挖掘·spark
m0_466525291 小时前
东软添翼AI 2.0获评医疗健康标杆AI Agent TOP10
大数据·人工智能
光算科技1 小时前
AI重写工具导致‘文本湍流’特征|如何人工消除算法识别标记
大数据·人工智能·算法
geoqiye2 小时前
2026官方认证:贵阳宠物行业短视频运营TOP5评测
大数据·python·宠物
Elastic 中国社区官方博客3 小时前
JINA AI 与 Elasticsearch 的集成
大数据·人工智能·elasticsearch·搜索引擎·全文检索·jina
TOWE technology3 小时前
聚焦价值 重塑增长
大数据·人工智能·企业
2502_911679143 小时前
精准与稳定的基石:Agilent 66311B,为移动通信测试量身定制的核心供电单元
大数据·网络·5g·信息与通信·信号处理
亚远景aspice3 小时前
亚远景-满足ASPICE要求的配置管理(SUP.8)与变更管理策略
大数据·网络·安全·汽车
深眸财经4 小时前
繁荣与崩塌,2026国产美妆站上「十字路口」
大数据·网络