【spark面试题】RDD和DataFrame以及DataSet有什么异同

RDD(Resilient Distributed Dataset):

  • 概念:可理解为分布式的列表。它的每个元素代表数据的一行,具有支持泛型这一显著特点。这种泛型支持让开发人员能够处理各种类型的数据,具有很强的灵活性。例如,在处理包含不同类型数据(如整数、字符串、自定义对象等)的数据集时,可以方便地在 RDD 中进行操作。

DataFrame:

  • 概念:它是一种分布式表,由数据和 Schema(模式)组成。
  • 特点:不支持泛型,其每行固定为 Row 类型。不过,它通过明确的模式定义,提供了更规范的数据处理方式。比如在数据查询、过滤和聚合操作中,可以利用列名和预定义的模式进行高效处理,这在处理大规模结构化数据时非常有用。

DataSet:

  • 概念:同样是分布式表,也由数据和 Schema 构成。
  • 特点:支持泛型,这一点和 RDD 类似,在保证数据类型安全的同时,兼具灵活性。开发人员可以更清晰地指定数据类型,在代码开发过程中能够减少类型相关的错误,并且在处理数据时,能更好地利用编译时的类型检查。而且在性能方面也表现出色,适用于大规模数据处理场景,比如在处理海量的用户信息数据时,可以更方便地处理不同类型的用户属性数据。
相关推荐
virtual_k1smet4 小时前
梧桐·鸿鹄- 大数据assistant-level
大数据·笔记
ggabb4 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
Blossom.1185 小时前
Prompt工程与思维链优化实战:从零构建动态Few-Shot与CoT推理引擎
人工智能·分布式·python·智能手机·django·prompt·边缘计算
aigcapi7 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
山峰哥8 小时前
SQL调优核心战法——索引失效场景与Explain深度解析
大数据·汇编·数据库·sql·编辑器·深度优先
hqyjzsb10 小时前
从爱好到专业:AI初学者如何跨越CAIE认证的理想与现实鸿沟
大数据·c语言·人工智能·信息可视化·职场和发展·excel·业界资讯
袋鼠云数栈10 小时前
企业数据资产管理核心框架:L1-L5分层架构解析
大数据·人工智能·架构
zxsz_com_cn11 小时前
设备预测性维护怎么做?预测性维护案例详解
大数据·人工智能
G皮T11 小时前
【Elasticsearch】查询性能调优(四):计数的精确性探讨
大数据·elasticsearch·搜索引擎·全文检索·es·性能·opensearch
十月南城11 小时前
ES性能与可用性——分片、副本、路由与聚合的调度逻辑与成本
大数据·elasticsearch·搜索引擎