Flink的环境搭建及使用

在idea中创建一个Maven项目,导入Flink的依赖,在代码中创建Flink环境,编写代码.

如果不想去找flink依赖,就去flink官网,提供了一个mvn的命令,快速下载在本地构建一个flink的项目,可以直接从这个项目的pom.xml文件中拿到依赖配置

一、环境搭建

pom.xml文件的依赖导入

XML 复制代码
<properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.15.4</flink.version>
        <target.java.version>1.8</target.java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <maven.compiler.source>${target.java.version}</maven.compiler.source>
        <maven.compiler.target>${target.java.version}</maven.compiler.target>
        <log4j.version>2.17.1</log4j.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
    </dependencies>

以WordCount为例:

java 复制代码
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class Demo1WordCount {

    public static void main(String[] args) throws Exception {
        //1、创建flink的执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //设置并行度,一个并行度对应一个task
        env.setParallelism(2);

        //修改数据从上游发送到下游的缓存时间
        env.setBufferTimeout(2000);


        /*
         * 无界流
         */
        //2、读取数据
        //nc -lk 8888
        DataStream<String> linesDS = env.socketTextStream("master", 8888);


        //一行转换成多行
        DataStream<String> wordsDS = linesDS
                .flatMap(new FlatMapFunction<String, String>() {
                    @Override
                    public void flatMap(String line, Collector<String> out) throws Exception {
                        for (String word : line.split(",")) {
                            //将数据发送到下游
                            out.collect(word);
                        }
                    }
                });

        //转换成kv格式
        DataStream<Tuple2<String, Integer>> kvDS = wordsDS
                .map(new MapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public Tuple2<String, Integer> map(String word) throws Exception {
                        //返回一个二元组
                        return Tuple2.of(word, 1);
                    }
                });

        //按照单词进行分组
        //底层是hash分区
        KeyedStream<Tuple2<String, Integer>, String> keyByDS = kvDS
                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> kv) throws Exception {
                        return kv.f0;
                    }
                });

        //统计数量
        DataStream<Tuple2<String, Integer>> countDS = keyByDS
                .reduce(new ReduceFunction<Tuple2<String, Integer>>() {
                    @Override
                    public Tuple2<String, Integer> reduce(Tuple2<String, Integer> kv1,
                                                          Tuple2<String, Integer> kv2) throws Exception {
                        int count = kv1.f1 + kv2.f1;
                        return Tuple2.of(kv1.f0, count);
                    }
                });

        //打印结果
        countDS.print();

        //3、启动flink
        env.execute("wc");
    }
}
相关推荐
Yz98762 分钟前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发
青云交2 分钟前
大数据新视界 -- 大数据大厂之 Hive 数据导入:多源数据集成的策略与实战(上)(3/ 30)
大数据·数据清洗·电商数据·数据整合·hive 数据导入·多源数据·影视娱乐数据
武子康5 分钟前
大数据-230 离线数仓 - ODS层的构建 Hive处理 UDF 与 SerDe 处理 与 当前总结
java·大数据·数据仓库·hive·hadoop·sql·hdfs
武子康7 分钟前
大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本
java·大数据·数据仓库·hive·hadoop·mysql
界面开发小八哥21 分钟前
更高效的Java 23开发,IntelliJ IDEA助力全面升级
java·开发语言·ide·intellij-idea·开发工具
时差95321 分钟前
Flink Standalone集群模式安装部署
大数据·分布式·flink·部署
锵锵锵锵~蒋24 分钟前
实时数据开发 | 怎么通俗理解Flink容错机制,提到的checkpoint、barrier、Savepoint、sink都是什么
大数据·数据仓库·flink·实时数据开发
二进制_博客25 分钟前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink
大数据编程之光27 分钟前
Flink入门介绍
大数据·flink
长风清留扬36 分钟前
一篇文章了解何为 “大数据治理“ 理论与实践
大数据·数据库·面试·数据治理