(C++回溯算法)微信小程序“开局托儿所”游戏

问题描述

给定一个矩阵 A = ( a i j ) m × n \bm A=(a_{ij}){m\times n} A=(aij)m×n,其中 a i j ∈ { 1 , 2 , ⋯   , 9 } a{ij}\in\{1,2,\cdots,9\} aij∈{1,2,⋯,9},且满足 ∑ i = 1 m ∑ j = 1 n a i j \sum\limits_{i=1}^m\sum\limits_{j=1}^na_{ij} i=1∑mj=1∑naij被10整除。玩家每次操作需要选择 A \bm A A中某个所有非空元素之和为10的子矩阵,并将其中所有的元素都标记为空。求按何种顺序消除能将 A \bm A A中所有的元素都标记为空,若存在则返回该解决方案,否则返回空列表。

代码

nursery_game.h

cpp 复制代码
#ifndef NURSERY_GAME
#define NURSERY_GAME
#include <vector>
#include <stdint.h>
struct Operate {
	uint8_t x1, y1, x2, y2;
	Operate() {}
	Operate(uint8_t i1, uint8_t j1, uint8_t i2, uint8_t j2):x1(i1), y1(j1), x2(i2), y2(j2) {}
};
std::vector<Operate> solve(int8_t *data, uint8_t m, uint8_t n);
#endif

nursery_game.cpp

cpp 复制代码
#include "nursery_game.h"
#include <utility>
using std::vector;

// #define RECOVER_DATA // 若希望不改变A的值请解开本行注释

#define handle(x1,y1,x2_start,tag) for(uint8_t x2=x2_start;x2<m;){uint8_t ie=x2*n;for(uint8_t y2=y1;y2<n;y2++){uint8_t sum=0;for(uint8_t i=is;i<=ie;i+=n)for(uint8_t j=i+y1,e=i+y2;j<=e;j++){int8_t t=A[j];if(t>0&&(sum+=t)>10)goto tag;}if(sum!=10)continue;vector<uint8_t> set;for(uint8_t i=is;i<=ie;i+=n)for(uint8_t j=i+y1,e=i+y2;j<=e;j++){int8_t t=A[j];if(t>0){A[j]=-t;set.push_back(j);}}R.emplace_back(x1,y1,x2,y2);unRemoveCount-=set.size();posSet.push_back(std::move(set));goto F_push;}tag:x2++;}

// A: 矩阵A数据,逐行排列
// m: 矩阵A行数
// n: 矩阵A列数
vector<Operate> solve(int8_t *A, uint8_t m, uint8_t n) {
	vector<Operate> R;
	vector<vector<uint8_t>> posSet;
	Operate op;
	uint8_t unRemoveCount = m * n, is;
F_push:
	if (!unRemoveCount) {
#ifdef RECOVER_DATA
		int8_t *p = A + m * n;
		do {
			--p;
			*p = -*p;
		} while (p != A);
#endif
		return std::move(R);
	}
	is = 0;
	for (uint8_t x1 = 0; x1 < m; x1++, is += n)
		for (uint8_t y1 = 0; y1 < n; y1++)
			handle(x1, y1, x1, F1)
F_pop:
	if (R.empty()) return {};
	op = R.back();
	R.pop_back();
	unRemoveCount += posSet.back().size();
	for (auto pos : posSet.back()) A[pos] = -A[pos];
	posSet.pop_back();
	is = op.x1 * n;
	handle(op.x1, op.y1, op.x2 + 1, F2)
	for (uint8_t y1 = op.y1 + 1; y1 < n; y1++) handle(op.x1, y1, op.x1, F3)
	for (uint8_t x1 = op.x1 + 1; x1 < m; x1++) {
		is += n;
		for (uint8_t y1 = 0; y1 < n; y1++) handle(x1, y1, x1, F4)
	}
	goto F_pop;
}

test.cpp

cpp 复制代码
#include "nursery_game.h"
#include <stdio.h>
using namespace std;

int main() {
	int8_t data[] = { 4,7,3,3,6,5,4,4,2,1,8,4,2,2,2,6,1,2,3,2,3,2,7,1,2,8,1,3,1,6,4,5,4,5,1,4,2,2,2,3,8,3,3,1,9,2,3,3,1,1,4,4,1,9,3,7,1,3,2,5,3,1,1,5 };
	vector<Operate> r(solve(data, 8, 8));
	for (auto op : r) printf("(%d,%d) (%d,%d)\n", op.x1, op.y1, op.x2, op.y2);
	return 0;
}

测试结果

复制代码
(0,1) (0,2)
(0,0) (2,1)
(0,0) (3,1)
(0,7) (1,7)
(1,3) (1,6)
(0,4) (3,4)
(1,3) (5,3)
(0,3) (2,5)
(0,3) (4,5)
(0,4) (6,4)
(2,0) (2,6)
(0,2) (4,2)
(0,2) (4,6)
(5,0) (7,0)
(5,7) (6,7)
(6,0) (7,2)
(5,0) (6,3)
(0,1) (5,6)
(0,5) (7,5)
(4,0) (6,7)
(3,7) (7,7)
(0,0) (7,7)

操作过程:






















相关推荐
Hcoco_me2 小时前
大模型面试题17:PCA算法详解及入门实操
算法
跨境卫士苏苏2 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
ZouZou老师2 小时前
C++设计模式之装饰器模式:以家具生产为例
c++·设计模式·装饰器模式
ZouZou老师2 小时前
C++设计模式之桥接模式:以家具生产为例
c++·设计模式·桥接模式
呱呱巨基2 小时前
Linux 进程概念
linux·c++·笔记·学习
liulilittle2 小时前
C++ 浮点数封装。
linux·服务器·开发语言·前端·网络·数据库·c++
云雾J视界2 小时前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理
Xの哲學2 小时前
Linux Miscdevice深度剖析:从原理到实战的完整指南
linux·服务器·算法·架构·边缘计算
ZouZou老师3 小时前
C++设计模式之组合模式:以家具生产为例
c++·设计模式·组合模式
yong15858553433 小时前
2. Linux C++ muduo 库学习——原子变量操作头文件
linux·c++·学习