(C++回溯算法)微信小程序“开局托儿所”游戏

问题描述

给定一个矩阵 A = ( a i j ) m × n \bm A=(a_{ij}){m\times n} A=(aij)m×n,其中 a i j ∈ { 1 , 2 , ⋯   , 9 } a{ij}\in\{1,2,\cdots,9\} aij∈{1,2,⋯,9},且满足 ∑ i = 1 m ∑ j = 1 n a i j \sum\limits_{i=1}^m\sum\limits_{j=1}^na_{ij} i=1∑mj=1∑naij被10整除。玩家每次操作需要选择 A \bm A A中某个所有非空元素之和为10的子矩阵,并将其中所有的元素都标记为空。求按何种顺序消除能将 A \bm A A中所有的元素都标记为空,若存在则返回该解决方案,否则返回空列表。

代码

nursery_game.h

cpp 复制代码
#ifndef NURSERY_GAME
#define NURSERY_GAME
#include <vector>
#include <stdint.h>
struct Operate {
	uint8_t x1, y1, x2, y2;
	Operate() {}
	Operate(uint8_t i1, uint8_t j1, uint8_t i2, uint8_t j2):x1(i1), y1(j1), x2(i2), y2(j2) {}
};
std::vector<Operate> solve(int8_t *data, uint8_t m, uint8_t n);
#endif

nursery_game.cpp

cpp 复制代码
#include "nursery_game.h"
#include <utility>
using std::vector;

// #define RECOVER_DATA // 若希望不改变A的值请解开本行注释

#define handle(x1,y1,x2_start,tag) for(uint8_t x2=x2_start;x2<m;){uint8_t ie=x2*n;for(uint8_t y2=y1;y2<n;y2++){uint8_t sum=0;for(uint8_t i=is;i<=ie;i+=n)for(uint8_t j=i+y1,e=i+y2;j<=e;j++){int8_t t=A[j];if(t>0&&(sum+=t)>10)goto tag;}if(sum!=10)continue;vector<uint8_t> set;for(uint8_t i=is;i<=ie;i+=n)for(uint8_t j=i+y1,e=i+y2;j<=e;j++){int8_t t=A[j];if(t>0){A[j]=-t;set.push_back(j);}}R.emplace_back(x1,y1,x2,y2);unRemoveCount-=set.size();posSet.push_back(std::move(set));goto F_push;}tag:x2++;}

// A: 矩阵A数据,逐行排列
// m: 矩阵A行数
// n: 矩阵A列数
vector<Operate> solve(int8_t *A, uint8_t m, uint8_t n) {
	vector<Operate> R;
	vector<vector<uint8_t>> posSet;
	Operate op;
	uint8_t unRemoveCount = m * n, is;
F_push:
	if (!unRemoveCount) {
#ifdef RECOVER_DATA
		int8_t *p = A + m * n;
		do {
			--p;
			*p = -*p;
		} while (p != A);
#endif
		return std::move(R);
	}
	is = 0;
	for (uint8_t x1 = 0; x1 < m; x1++, is += n)
		for (uint8_t y1 = 0; y1 < n; y1++)
			handle(x1, y1, x1, F1)
F_pop:
	if (R.empty()) return {};
	op = R.back();
	R.pop_back();
	unRemoveCount += posSet.back().size();
	for (auto pos : posSet.back()) A[pos] = -A[pos];
	posSet.pop_back();
	is = op.x1 * n;
	handle(op.x1, op.y1, op.x2 + 1, F2)
	for (uint8_t y1 = op.y1 + 1; y1 < n; y1++) handle(op.x1, y1, op.x1, F3)
	for (uint8_t x1 = op.x1 + 1; x1 < m; x1++) {
		is += n;
		for (uint8_t y1 = 0; y1 < n; y1++) handle(x1, y1, x1, F4)
	}
	goto F_pop;
}

test.cpp

cpp 复制代码
#include "nursery_game.h"
#include <stdio.h>
using namespace std;

int main() {
	int8_t data[] = { 4,7,3,3,6,5,4,4,2,1,8,4,2,2,2,6,1,2,3,2,3,2,7,1,2,8,1,3,1,6,4,5,4,5,1,4,2,2,2,3,8,3,3,1,9,2,3,3,1,1,4,4,1,9,3,7,1,3,2,5,3,1,1,5 };
	vector<Operate> r(solve(data, 8, 8));
	for (auto op : r) printf("(%d,%d) (%d,%d)\n", op.x1, op.y1, op.x2, op.y2);
	return 0;
}

测试结果

复制代码
(0,1) (0,2)
(0,0) (2,1)
(0,0) (3,1)
(0,7) (1,7)
(1,3) (1,6)
(0,4) (3,4)
(1,3) (5,3)
(0,3) (2,5)
(0,3) (4,5)
(0,4) (6,4)
(2,0) (2,6)
(0,2) (4,2)
(0,2) (4,6)
(5,0) (7,0)
(5,7) (6,7)
(6,0) (7,2)
(5,0) (6,3)
(0,1) (5,6)
(0,5) (7,5)
(4,0) (6,7)
(3,7) (7,7)
(0,0) (7,7)

操作过程:






















相关推荐
序属秋秋秋9 分钟前
《Linux系统编程之进程控制》【进程等待】
linux·c语言·c++·进程·系统编程·进程控制·进程等待
Fuly102413 分钟前
大模型剪枝(Pruning)技术简介
算法·机器学习·剪枝
Xの哲學19 分钟前
Linux网卡注册流程深度解析: 从硬件探测到网络栈
linux·服务器·网络·算法·边缘计算
bubiyoushang88822 分钟前
二维地质模型的表面重力值和重力异常计算
算法
l木本I41 分钟前
Reinforcement Learning for VLA(强化学习+VLA)
c++·人工智能·python·机器学习·机器人
仙俊红1 小时前
LeetCode322零钱兑换
算法
颖风船1 小时前
锂电池SOC估计的一种算法(改进无迹卡尔曼滤波)
python·算法·信号处理
strive programming1 小时前
Effective C++_异常(解剖挖掘)
c++
551只玄猫1 小时前
KNN算法基础 机器学习基础1 python人工智能
人工智能·python·算法·机器学习·机器学习算法·knn·knn算法
charliejohn1 小时前
计算机考研 408 数据结构 哈夫曼
数据结构·考研·算法