【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024

近期,阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选 。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。

论文简述

面向长文本的文视频表征学习与检索模型 VideoCLIP-XL

CLIP 模型在视觉-语言预训练领域已经取得了重要进展。然而,原始 CLIP 模型的一个显著局限性是处理长文本描述的能力受限。原始 CLIP 模型的训练过程中对简短的摘要性文本的强调迫使文本/视觉编码器主要关注文本/视觉输入中的主要特征,常常忽视一些较小但潜在关键的细节。为了解决这些限制,该工作提出了一个名为 VideoCLIP-XL 的视频 CLIP 模型,旨在提升对视频的长文本描述的理解能力。其首先构建了一个大规模的视频-长描述配对数据集 VILD,并在预训练阶段提出了一种文本相似度引导的主成分匹配方法(TPCM)来优化高维特征空间的学习。

此外,该工作提出能够理解长描述的视频 CLIP 模型应当体现两个特征:给定一个视频及其相关描述,CLIP 类模型应该对(1)具有更丰富和更精确细节的描述以及(2)在相同细节水平下更准确即幻觉更少的描述赋予更高的分数。为此,其提出两个新的预训练任务:细节描述排序(DDR)和幻觉描述排序(HDR)。此外,该工作也建立了一个新的视频长描述排序基准测评集(LVDR),来更全面地评估视频 CLIP 模型的性能。

基于多任务课程规划的大语言模型蒸馏算法

大语言模型在回答开放领域通用任务的指令上取得了很大地进步。指令微调是微调预训练模型,使其从文本补全模型成为强大的对话模型的关键。尽管已有研究探索了使用强大的黑盒教师模型(如GPT-4, Qwen-max)来自动蒸馏和标注指令的方法,但这些研究往往忽视了微调训练集中任务的多样性分布,以及训练集中指令难度的差异,这可能导致学生 LLMs 知识能力的不平衡和解决复杂任务的能力的不足。为了解决这些挑战,这篇文章介绍了一个名为 TAPIR 的知识蒸馏框架,它通过多任务课程规划来蒸馏黑盒大语言模型的指令回答能力,在蒸馏和多轮迭代过程中,使用教师 LLM 做为裁判找出对于学生 LLM 来说难以回答的指令,进行难度重采样。并调整多任务配比进行训练集中的任务多样性分布的重采样,并根据相应多任务特点自动优化教师模型的回答风格。

该工作创新性地用显式的任务标签配比代替隐式的句向量多样性。在任务重采样的过程中,大大增加数学推理代码类任务的数据比例。首次提出了模型拟合难度 (MFD) 指标,来表示数据难度大小,并在多轮迭代优化的过程中提升困难数据占比。提升模型从弱到强的泛化速度。在 AlpacaEval 排行榜上,我们微调后的 LLaMA2-7B 底座获得了7.8的相对分数,超过了参数量、数据量都远大于我们的知名开源模型模型(LLaMA2-Chat-13B,Vicuna 13B)。我们持续优化了 Qwen 系列模型的指令回答能力,优化 Qwen1.5系列模型在 AlpacaEval 榜单上提升3-8个百分点。

产品化服务

上述科研成果也在人工智能平台PAI的各个模块进行了深度的集成和整合,持续为PAI客户提供AI模型训练和推理相关服务。其中,VideoCLIP-XL作为文视频质量评估模块,与EasyAnimate视频生成解决方案无缝融合,支持用户轻松实现文视频语义一致性计算和数据过滤,从而训练AIGC视频生成大模型。在智码实验室,我们也上架了"VideoCLIP-XL:面向超长文本的文视频跨模态特征抽取"的notebook。

用于数据增强和改写的蒸馏模型也已经上架PAI平台,为用户提供简单易用的大模型蒸馏解决方案。基于Qwen2的开源模型,PAI也在开源了DistilQwen2蒸馏小模型系列,进一步提升了模型的指令跟随能力,在HuggingFace和ModelScope开源社区开放下载。

此外,PAI-QuickStart集成了超过50个热门大语言模型,及其多种训练和推理方式,使客户更加简单地微调和部署大语言模型。在未来,我们也将在PAI平台上持续提供业界领先的算法和模型能力给广大客户。

资源链接

文-视频多模态

大模型蒸馏

alibaba-pai/DistilQwen2-7B-Instruct:

alibaba-pai/DistilQwen2-1.5B-Instruct:

论文汇总

**论文名字:**VideoCLIP-XL: Advancing Long Description Understanding for Video CLIP Models

**论文作者:**汪嘉鹏、汪诚愚、黄坤哲、黄俊、金连文

论文pdf链接: https://arxiv.org/abs/2410.00741

**论文名字:**Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning

**论文作者:**岳元浩、汪诚愚、黄俊、王鹏

论文pdf链接: https://arxiv.org/abs/2405.13448

阿里云人工智能平台 PAI 长期招聘研究实习生。团队专注于深度学习算法研究与应用,重点聚焦大语言模型和多模态 AIGC 大模型的应用算法研究和应用。简历投递和咨询: chengyu.wcy@alibaba-inc.com

相关推荐
黑客-雨几秒前
从零开始:如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
开发语言·人工智能·python·大模型·ai产品经理·大模型学习·大模型入门
是Dream呀几秒前
引领AI发展潮流:打造大模型时代的安全与可信——CCF-CV企业交流会走进合合信息会议回顾
人工智能·安全·生成式ai
日出等日落2 分钟前
小白也能轻松上手的GPT-SoVITS AI语音克隆神器一键部署教程
人工智能·gpt
孤独且没人爱的纸鹤14 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
后端研发Marion17 分钟前
【AI编辑器】字节跳动推出AI IDE——Trae,专为中文开发者深度定制
人工智能·ai编程·ai程序员·trae·ai编辑器
Tiger Z39 分钟前
R 语言科研绘图 --- 散点图-汇总
人工智能·程序人生·r语言·贴图
小深ai硬件分享2 小时前
Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
服务器·人工智能·深度学习
hunter2062063 小时前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z3 小时前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos4 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习