粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测

粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测

目录

效果一览





基本介绍

1.Matlab实现PSO-BiTCN-BiGRU-Attention粒子群算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;

2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;

3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细;

5.适用对象:大学生课程设计、期末大作业和毕业设计。

程序设计

  • 完整程序和数据下载私信博主回复粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
AI绘画咪酱28 分钟前
【AI绘画】AI绘图教程|stable diffusion(SD)图生图涂鸦超详细攻略,教你快速上手
人工智能·ai作画·stable diffusion·aigc·midjourney
bigbig猩猩39 分钟前
跨模态对齐与跨领域学习:提升AI泛化与理解能力的研究
人工智能·学习
云翼时代科技42 分钟前
Midjourney中文版:创意无界,艺术之旅由此启航!
人工智能
LDG_AGI43 分钟前
【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
大数据·人工智能·python·深度学习·机器学习·数据挖掘
Shy9604181 小时前
Pytorch实现transformer语言模型
人工智能·pytorch
凤枭香1 小时前
python opencv灰度变换
图像处理·人工智能·python·opencv
多吃轻食1 小时前
大模型的常用指令格式 --> ShareGPT 和 Alpaca (以 llama-factory 里的设置为例)
人工智能·深度学习·语言模型·自然语言处理
全栈若城1 小时前
腾讯云 AI 代码助手
人工智能
韬小志1 小时前
【LLaMa-Factory】监督微调训练方法
人工智能·深度学习·llama
BlockOne111 小时前
Meme 币生态全景图分析:如何获得超额收益?
大数据·人工智能·区块链