评估 机器学习 回归模型 的性能和准确度

回归 是一种常用的预测模型,用于预测一个连续因变量 和一个或多个自变量之间的关系。

那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。

接下来,和大家分享如何评估 回归模型 的性能和准确度。

一、 评估指标

1.1 均方误差(MSE)

均方误差 (Mean Squared Error, MSE )衡量的是预测值与真实值之间的平均平方差异。MSE越小,模型的预测精度越高。由于平方误差将偏差放大,因此MSE对异常值(Outliers)比较敏感。

  • 是第 个样本的真实值。 是第 个样本的预测值。 是样本总数。
python 复制代码
from sklearn.metrics import mean_squared_error

# y_true 是真实值数组,y_pred 是预测值数组
mse = mean_squared_error(y_true, y_pred)
print("Mean Squared Error (MSE):", mse)

1.2 均方根误差(RMSE)

均方根误差 (Root Mean Squared Error, RMSE )是MSE的平方根,具有与原数据相同的量纲(单位),因此更容易解释。它同样对异常值敏感。

python 复制代码
import numpy as np

rmse = np.sqrt(mean_squared_error(y_true, y_pred))
print("Root Mean Squared Error (RMSE):", rmse)

1.3 平均绝对误差(MAE)

平均绝对误差 (Mean Absolute Error, MAE )衡量的是预测值与真实值之间的平均绝对差异。相比MSE和RMSE,MAE对异常值不那么敏感。

python 复制代码
from sklearn.metrics import mean_absolute_error

mae = mean_absolute_error(y_true, y_pred)
print("Mean Absolute Error (MAE):", mae)

1.4. 决定系数(R²)

决定系数 )衡量的是模型解释数据变异的比例。其取值范围在0到1之间,值越接近1,模型解释能力越强。如果R²为0,表示模型没有解释任何数据变异;如果R²为1,表示模型完美地解释了数据变异。

  • 是真实值的平均值。
python 复制代码
from sklearn.metrics import r2_score

r2 = r2_score(y_true, y_pred)
print("R² (Coefficient of Determination):", r2)

二、 评估图

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(1000, 1)
y = 4 + 3 * X + np.random.randn(1000, 1)

# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

2.1 真实值与预测值的散点图

我们可以通过散点图比较真实值与预测值,直观展示模型的预测效果。

python 复制代码
plt.scatter(X_test, y_test, color='black', label='Actual Values')
plt.scatter(X_test, y_test_pred, color='blue', label='Predicted Values')
plt.plot(X_test, y_test_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Actual vs Predicted Values')
plt.legend()
plt.show()

2.2 预测误差的分布图

预测误差(真实值与预测值的差异)的分布图可以帮助我们了解模型误差的分布情况。

python 复制代码
errors = y_test - y_test_pred

plt.hist(errors, bins=20, edgecolor='black')
plt.xlabel('Prediction Error')
plt.ylabel('Frequency')
plt.title('Distribution of Prediction Errors')
plt.show()

2.3 学习曲线

习曲线展示了训练误差和验证误差随训练集大小的变化情况,有助于我们诊断模型是否存在欠拟合或过拟合问题。

python 复制代码
from sklearn.model_selection import learning_curve

train_sizes, train_scores, test_scores = learning_curve(model, X, y, cv=5, scoring='neg_mean_squared_error')

train_scores_mean = -train_scores.mean(axis=1)
test_scores_mean = -test_scores.mean(axis=1)

plt.plot(train_sizes, train_scores_mean, label='Training error')
plt.plot(train_sizes, test_scores_mean, label='Validation error')
plt.ylabel('MSE')
plt.xlabel('Training set size')
plt.title('Learning Curves')
plt.legend()
plt.show()

以上是详细介绍如何评估 回归模型 的性能和准确度,包括各个评估指标的原理、公式推导以及在Python中的实现。

参考:

机器学习模型评估的方法总结(回归、分类模型的评估)_分类模型评估方法-CSDN博客

模型评估指标总结(预测指标、分类指标、回归指标)_常见模型误差评价指标-CSDN博客

机器学习笔记:回归模型评估指标------MAE、MSE、RMSE、MAPE、R2等 - Hider1214 - 博客园

持续更新中。。。

相关推荐
机器之心3 分钟前
全球十亿级轨迹点驱动,首个轨迹基础大模型来了
人工智能·后端
z千鑫4 分钟前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
EterNity_TiMe_5 分钟前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
机智的小神仙儿21 分钟前
Query Processing——搜索与推荐系统的核心基础
人工智能·推荐算法
AI_小站28 分钟前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·程序人生·langchain·kubernetes·llama·知识库·rag
Doker 多克30 分钟前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
Guofu_Liao30 分钟前
Llama模型文件介绍
人工智能·llama
思通数科多模态大模型1 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
数据岛1 小时前
数据集论文:面向深度学习的土地利用场景分类与变化检测
人工智能·深度学习
龙的爹23332 小时前
论文翻译 | RECITATION-AUGMENTED LANGUAGE MODELS
人工智能·语言模型·自然语言处理·prompt·gpu算力