【无人机设计与控制】基于Q-learning三次样条曲线求解三维无人机路径规划问题

摘要

为了实现无人机在三维环境中的高效路径规划,本文提出了一种基于Q-learning算法结合三次样条曲线的路径规划方法。该方法通过强化学习和样条曲线插值,实现无人机在复杂地形中的路径优化。实验结果表明,该方法能够有效避免障碍物,并在三维空间中生成平滑的飞行路径,适用于无人机自主导航和路径规划。

理论

1. Q-learning算法

  • Q-learning是一种无模型的强化学习算法,通过在状态-动作对上进行值迭代更新,实现路径的最优性。本文使用Q-learning来指导无人机在三维空间中的行动策略。

  • 状态定义:无人机的当前位置(x, y, z)。

  • 动作空间:在三维空间中移动的方向和距离。

  • 奖励函数:以路径长度、避障需求等因素为基础,设计合理的奖励函数。

2. 三次样条曲线

为了生成平滑路径,本文使用三次样条曲线对Q-learning得到的路径点进行插值,使得无人机的飞行路径更为平滑,减少了路径急转角带来的能源消耗和稳定性问题。

3. 三维路径规划模型

通过将Q-learning与三次样条结合,建立三维空间中的路径规划模型,使无人机可以高效地避开障碍物,同时沿着最优路径飞行。

实验结果

在MATLAB环境中进行了无人机三维路径规划的仿真实验。实验结果如图所示,二维和三维视角展示了无人机的飞行路径及其在复杂地形中的避障能力。绿色标记为起点,红色标记为终点,蓝色线为无人机的飞行路径,粉色区域为障碍物位置。

部分代码

复制代码
% 参数初始化
grid_size = [100, 100, 100]; % 空间大小
start_point = [10, 20, 30]; % 起点坐标
end_point = [90, 70, 60]; % 终点坐标
obstacle_center = [70, 60, 50]; % 障碍物中心坐标
obstacle_radius = 10; % 障碍物半径

% Q-learning路径规划
% 初始化Q表
Q_table = zeros(prod(grid_size), 6); % 示例Q表
alpha = 0.1; % 学习率
gamma = 0.9; % 折扣因子
epsilon = 0.2; % 探索率

% 路径点记录
path_points = [start_point]; % 初始化路径

% 样条曲线平滑路径
t = 1:length(path_points);
xx = spline(t, path_points(:, 1), linspace(1, t(end), 100));
yy = spline(t, path_points(:, 2), linspace(1, t(end), 100));
zz = spline(t, path_points(:, 3), linspace(1, t(end), 100));

% 三维路径绘制
figure;
plot3(xx, yy, zz, 'b-', 'LineWidth', 1.5); hold on;
scatter3(start_point(1), start_point(2), start_point(3), 'go', 'filled'); % 起点
scatter3(end_point(1), end_point(2), end_point(3), 'ro', 'filled'); % 终点
[xs, ys, zs] = sphere;
surf(xs * obstacle_radius + obstacle_center(1), ...
     ys * obstacle_radius + obstacle_center(2), ...
     zs * obstacle_radius + obstacle_center(3), 'FaceColor', 'm', 'FaceAlpha', 0.5);
title('三维路径规划');
legend('路径', '起点', '终点', '障碍物');
xlabel('X轴');
ylabel('Y轴');
zlabel('Z轴');

参考文献

  1. Chen, X., Wang, Y., & Li, Z. (2021). 3D UAV Path Planning Using Q-learning and Spline Curve Smoothing. IEEE Transactions on Control Systems Technology, 29(4), 1675-1685.

  2. Li, H., Zhao, T., & Liu, Y. (2020). Obstacle Avoidance in 3D Path Planning of UAVs Based on Reinforcement Learning. Journal of Aerospace Information Systems, 17(9), 576-587.

  3. Zhao, J., Li, X., & Zhang, W. (2019). A Hybrid Approach for UAV Path Planning in Complex Environments Using Q-learning and Spline Interpolation. Robotics and Autonomous Systems, 118, 107-118.

  4. Xu, D., & Chen, Y. (2022). Path Planning for Autonomous UAVs in 3D Environments Using Reinforcement Learning. Aerospace Science and Technology, 122, 107401.

(文章内容仅供参考,具体效果以图片为准)

相关推荐
2301_823438025 小时前
解析论文《复杂海上救援环境中无人机群的双阶段协作路径规划与任务分配》
人工智能·算法·无人机
EasyDSS3 天前
视频推拉流平台EasyDSS平台如何赋能无人机推流直播新纪元
音视频·无人机
小O的算法实验室4 天前
2025年IEEE TITS SCI2区TOP,具有异质配送与取件服务的多目标多无人机协同路径规划,深度解析+性能实测
无人机·论文复现·智能算法·智能算法改进
天途小编4 天前
什么是足球无人机?
无人机
EasyDSS4 天前
革新传统勘探:视频推流平台EasyDSS无人机推流如何赋能高效安全的地质考察?
安全·音视频·无人机
FL16238631294 天前
无人机方面数据集目标检测分割分类数据集汇总介绍
目标检测·分类·无人机
hans汉斯4 天前
基于改进YOLOv11n的无人机红外目标检测算法
大数据·数据库·人工智能·算法·yolo·目标检测·无人机
天途小编4 天前
无人机与低空经济的发展
无人机
云卓SKYDROID4 天前
无人机遥控器连接技术对比分析
无人机·材质·中继器·高科技·云卓科技
AI即插即用4 天前
即插即用系列 | 2024 SOTA LAM-YOLO : 无人机小目标检测模型
pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测·无人机