<项目代码>YOLOv8 苹果腐烂识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>苹果腐烂识别数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 F1_curve

3.5 confusion_matrix

3.6 confusion_matrix_normalized

3.7 验证 batch

标签:

预测结果:

3.8 识别效果图

相关推荐
szxinmai主板定制专家13 分钟前
RK3588+AI算力卡替代英伟达jetson方案,大算力,支持FPGA自定义扩展
arm开发·人工智能·分布式·fpga开发
ccut 第一混24 分钟前
c# 使用yolov5模型
人工智能·深度学习
PHOSKEY25 分钟前
应用案例丨3D工业相机如何实现「焊接全工序守护」
人工智能
纪伊路上盛名在1 小时前
python5.1 数据类dataclass
python·面向对象编程·oop
用户718841750781 小时前
深究 Python 中 int () 函数为何无法转换含小数点的字符串
python
喜欢吃豆1 小时前
从指令到智能:大型语言模型提示词工程与上下文工程的综合分析
人工智能·语言模型·自然语言处理·大模型·提示词工程·上下文工程
七元权1 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
Fuly10241 小时前
prompt构建技巧
人工智能·prompt
智驱力人工智能1 小时前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
on_pluto_1 小时前
LLaMA: Open and Efficient Foundation Language Models 论文阅读
python·机器学习