<项目代码>YOLOv7 草莓叶片病害识别<目标检测>

YOLOv7是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv7具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>草莓叶片病害识别数据集<目标检测>

2.模型训练结果

YOLOv7在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

2.1 map@50指标

2.2 P_curve.png

2.3 R_curve.png

2.4 results.png

2.5 F1_curve

2.6 confusion_matrix_normalized

2.7 验证 batch

标签:

预测结果:

2.8 识别效果图

相关推荐
游客5207 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
一位小说男主7 分钟前
编码器与解码器:从‘乱码’到‘通话’
人工智能·深度学习
KeyPan11 分钟前
【IMU:视觉惯性SLAM系统】
计算机视觉
深圳南柯电子23 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ24 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008829 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖35 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232922 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理