<项目代码>YOLOv7 草莓叶片病害识别<目标检测>

YOLOv7是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv7具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>草莓叶片病害识别数据集<目标检测>

2.模型训练结果

YOLOv7在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

2.1 map@50指标

2.2 P_curve.png

2.3 R_curve.png

2.4 results.png

2.5 F1_curve

2.6 confusion_matrix_normalized

2.7 验证 batch

标签:

预测结果:

2.8 识别效果图

相关推荐
和鲸社区10 分钟前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
fanstuck12 分钟前
2025 年高教社杯全国大学生数学建模竞赛C 题 NIPT 的时点选择与胎儿的异常判定详解(一)
人工智能·目标检测·数学建模·数据挖掘·aigc
cxr82813 分钟前
Claude Code PM 深度实战指南:AI驱动的GitHub项目管理与并行协作
人工智能·驱动开发·github
THMAIL1 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
Gyoku Mint1 小时前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
菩提树下的凡夫1 小时前
瑞芯微RV1126目标识别算法Yolov8的部署应用
java·算法·yolo
YF云飞2 小时前
数据仓库进化:Agent驱动数智化新范式
数据仓库·人工智能·ai
ningmengjing_2 小时前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
程序猿炎义2 小时前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
小陈phd2 小时前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain