【复平面】-复数相乘的几何性质


文章目录

  • 从数学上证明
    • [1. 计算乘积 z 1 ⋅ z 2 z_1 \cdot z_2 z1⋅z2](#1. 计算乘积 z 1 ⋅ z 2 z_1 \cdot z_2 z1⋅z2)
    • [2. 应用三角恒等式](#2. 应用三角恒等式)
    • [3. 得出结果](#3. 得出结果)
  • 从几何角度证明
    • [1.给出待乘的复数 u i u_i ui](#1.给出待乘的复数 u i u_i ui)
    • [2.给出任意复数 l l l](#2.给出任意复数 l l l)
    • [3.复数 l l l 在不同坐标轴下的表示图](#3.复数 l l l 在不同坐标轴下的表示图)

首先说结论:

在复平面中,两个复数(即向量)相乘时,满足模长相乘,角度相加的性质。

从数学上证明

假设两个复数 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 表示为:

z 1 = r 1 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) z_1 = r_1 (\cos \theta_1 + i \sin \theta_1) z1=r1(cosθ1+isinθ1)
z 2 = r 2 ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_2 = r_2 (\cos \theta_2 + i \sin \theta_2) z2=r2(cosθ2+isinθ2)

其中:

  • ( r 1 = ∣ z 1 ∣ r_1 = |z_1| r1=∣z1∣ ) 和 ( r 2 = ∣ z 2 ∣ r_2 = |z_2| r2=∣z2∣ ) 分别是 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 的模长,
  • ( θ 1 \theta_1 θ1 ) 和 ( θ 2 \theta_2 θ2 ) 分别是 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 的辐角(即相对于实轴的角度)。

1. 计算乘积 z 1 ⋅ z 2 z_1 \cdot z_2 z1⋅z2

我们将 ( z 1 z_1 z1 ) 和 ( z 2 z_2 z2 ) 相乘,得到:

z 1 ⋅ z 2 = r 1 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) ⋅ r 2 ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) z_1 \cdot z_2 = r_1 (\cos \theta_1 + i \sin \theta_1) \cdot r_2 (\cos \theta_2 + i \sin \theta_2) z1⋅z2=r1(cosθ1+isinθ1)⋅r2(cosθ2+isinθ2)

使用分配律展开:

z 1 ⋅ z 2 = r 1 r 2 [ ( cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 ) + i ( cos ⁡ θ 1 sin ⁡ θ 2 + sin ⁡ θ 1 cos ⁡ θ 2 ) ] z_1 \cdot z_2 = r_1 r_2 \left[ (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) \right] z1⋅z2=r1r2[(cosθ1cosθ2−sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)]

2. 应用三角恒等式

根据加法公式的三角恒等式,有:

cos ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 \cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 cos(θ1+θ2)=cosθ1cosθ2−sinθ1sinθ2

sin ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 sin ⁡ θ 2 + sin ⁡ θ 1 cos ⁡ θ 2 \sin(\theta_1 + \theta_2) = \cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2 sin(θ1+θ2)=cosθ1sinθ2+sinθ1cosθ2

将这些恒等式代入到上面的表达式中,我们得到:

z 1 ⋅ z 2 = r 1 r 2 ( cos ⁡ ( θ 1 + θ 2 ) + i sin ⁡ ( θ 1 + θ 2 ) ) z_1 \cdot z_2 = r_1 r_2 \left( \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right) z1⋅z2=r1r2(cos(θ1+θ2)+isin(θ1+θ2))

3. 得出结果

根据复数的极坐标形式,这个结果可以写成:

z 1 ⋅ z 2 = r 1 r 2 ⋅ e i ( θ 1 + θ 2 ) z_1 \cdot z_2 = r_1 r_2 \cdot e^{i (\theta_1 + \theta_2)} z1⋅z2=r1r2⋅ei(θ1+θ2)

因此,我们得出结论:两个复数相乘时,其模长是各自模长的乘积,辐角是各自辐角的和,即满足"模长相乘,角度相加"的性质。

从几何角度证明

本质上就是坐标轴的变换

1.给出待乘的复数 u i u_i ui

{ u = a + b i u i = − b + a i \left\{\begin{array}{l} u=a+b i \\ u i=-b+a i \end{array}\right. {u=a+biui=−b+ai

( a , b ) ⋅ ( − b , a ) = 0 (a,b)\cdot(-b,a)=0 (a,b)⋅(−b,a)=0由于内积为0,故u与ui正交

2.给出任意复数 l l l

所以 ∀ l = x + y i \forall l=x+y_{i} ∀l=x+yi与u相乘可以在新的坐标轴u、ui下表示,其与坐标轴角度与在原先坐标轴下相同。

所以两个复数(即向量)相乘时,满足角度相加 的性质。
{ ∀ l = x + y i l ⋅ u = ( x + y i ) ⋅ u = x u + y u i \left\{\begin{array}{l} \forall l=x+y_{i} \\ l \cdot u=\left(x+y_{i}\right) \cdot u=x u+y u i \end{array}\right. {∀l=x+yil⋅u=(x+yi)⋅u=xu+yui

3.复数 l l l 在不同坐标轴下的表示图

|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| | |

相关推荐
IT 青年2 个月前
信息安全数学基础(14)欧拉函数
数学·信息安全·欧拉函数
ComputerInBook4 个月前
复分析——第9章——椭圆函数导论(E.M. Stein & R. Shakarchi)
复分析·椭圆函数
ComputerInBook4 个月前
复分析——第8章——共形映射(E.M. Stein & R. Shakarchi)
映射·复分析·共形映射·保角映射
ComputerInBook4 个月前
复分析——第10章——Θ函数应用(E.M. Stein & R. Shakarchi)
复分析·theta函数应用
ComputerInBook5 个月前
复分析——第4章——Fourier变换(E.M. Stein & R. Shakarchi)
傅里叶变换·复分析·fourier变换·傅立叶变换
ComputerInBook5 个月前
复分析——第6章—— Γ 函数和 ζ 函数(E.M. Stein & R. Shakarchi)
复分析·zeta函数·gamma函数
ComputerInBook5 个月前
复分析——第3章——亚纯函数和对数(E.M. Stein & R. Shakarchi)
亚纯函数·复对数·复分析
Wei&Yan7 个月前
蓝桥杯每日一题:最大公约数(欧拉函数)
数据结构·c++·算法·蓝桥杯·欧拉函数
卡布叻_周深9 个月前
2024初三年后集训模拟测试4
dfs·贪心·双指针·欧拉函数·打表,找规律·大模拟·meet in middle