在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式,以r为参数:

复制代码
p[z_, r_] := z^3 + (r - 1) z - r;
roots[r_] := z /. Solve[p[z, r] == 0, z];

此多项式的根为:

尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式的。此时的Newton-Raphson映射为:

此时,可以编写带有参数r的收敛速度计数函数:

复制代码
NewNewtonCounter = 
  Compile[{{z, _Complex}, {r, _Real}, {otherroot, _Complex}},
   Module[{counter = 0, zold = N[z] + 1, znew = N[z]},
    If[Abs[znew] < 10^(-9), znew = 10^(-9) + 0.0 I,
     znew = znew];
    For[counter = 0,
     (Abs[zold - znew] > 10^(-6)) && (counter < 85), counter++,
     (zold = znew; znew = (r + 2*zold^3)/(-1 + r + 3*zold^2))];
    Which[Abs[znew - 1] < 10^(-4), counter,
     Abs[znew - otherroot] < 10^(-4), 85 + counter,
     Abs[znew - Conjugate[otherroot]] < 10^(-4), 170 + counter,
     True, 255
     ]
    ]
   ];
 
   (*返回给定区域中的每个点相应的收敛计数*)  
 NewNewtonArray[r_, {{remin_, remax_}, {immin_, immax_}}, steps_] :=
 Module[{croot = -N[(1 + Sqrt[1 - 4 r])/2]},
  Table[NewNewtonCounter[x + y I, r, croot],
   {y, immin, immax, (immax - immin)/steps},
   {x, remin, remax, (remax - remin)/steps}
   ]
  ]

region = NewNewtonArray[2, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]
复制代码
region = NewNewtonArray[0.05, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]
相关推荐
程序员泡椒6 小时前
二分查找Go版本实现
数据结构·c++·算法·leetcode·go·二分
小雨下雨的雨6 小时前
Flutter鸿蒙共赢——墨染算法:柏林噪声与鸿蒙生态中的数字水墨意境
算法·flutter·华为·交互·harmonyos·鸿蒙
NAGNIP12 小时前
万字长文!回归模型最全讲解!
算法·面试
知乎的哥廷根数学学派13 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
666HZ66614 小时前
数据结构2.0 线性表
c语言·数据结构·算法
实心儿儿15 小时前
Linux —— 基础开发工具5
linux·运维·算法
charlie11451419116 小时前
嵌入式的现代C++教程——constexpr与设计技巧
开发语言·c++·笔记·单片机·学习·算法·嵌入式
清木铎17 小时前
leetcode_day4_筑基期_《绝境求生》
算法
清木铎17 小时前
leetcode_day10_筑基期_《绝境求生》
算法
j_jiajia17 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法