在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式,以r为参数:

复制代码
p[z_, r_] := z^3 + (r - 1) z - r;
roots[r_] := z /. Solve[p[z, r] == 0, z];

此多项式的根为:

尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式的。此时的Newton-Raphson映射为:

此时,可以编写带有参数r的收敛速度计数函数:

复制代码
NewNewtonCounter = 
  Compile[{{z, _Complex}, {r, _Real}, {otherroot, _Complex}},
   Module[{counter = 0, zold = N[z] + 1, znew = N[z]},
    If[Abs[znew] < 10^(-9), znew = 10^(-9) + 0.0 I,
     znew = znew];
    For[counter = 0,
     (Abs[zold - znew] > 10^(-6)) && (counter < 85), counter++,
     (zold = znew; znew = (r + 2*zold^3)/(-1 + r + 3*zold^2))];
    Which[Abs[znew - 1] < 10^(-4), counter,
     Abs[znew - otherroot] < 10^(-4), 85 + counter,
     Abs[znew - Conjugate[otherroot]] < 10^(-4), 170 + counter,
     True, 255
     ]
    ]
   ];
 
   (*返回给定区域中的每个点相应的收敛计数*)  
 NewNewtonArray[r_, {{remin_, remax_}, {immin_, immax_}}, steps_] :=
 Module[{croot = -N[(1 + Sqrt[1 - 4 r])/2]},
  Table[NewNewtonCounter[x + y I, r, croot],
   {y, immin, immax, (immax - immin)/steps},
   {x, remin, remax, (remax - remin)/steps}
   ]
  ]

region = NewNewtonArray[2, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]
复制代码
region = NewNewtonArray[0.05, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]
相关推荐
赛姐在努力.18 小时前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
野犬寒鸦19 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
霖霖总总19 小时前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法
rainbow688919 小时前
深入解析C++STL:map与set底层奥秘
java·数据结构·算法
wangjialelele20 小时前
平衡二叉搜索树:AVL树和红黑树
java·c语言·开发语言·数据结构·c++·算法·深度优先
驱动探索者20 小时前
linux mailbox 学习
linux·学习·算法
ringking12320 小时前
autoware-1:安装环境cuda/cudnn/tensorRT库函数的判断
人工智能·算法·机器学习
大闲在人21 小时前
8. 供应链与制造过程术语:产能
算法·制造·供应链管理·智能制造·工业工程
一只小小的芙厨21 小时前
寒假集训笔记·以点为对象的树形DP
c++·算法
历程里程碑21 小时前
普通数组----合并区间
java·数据结构·python·算法·leetcode·职场和发展·tornado