在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式,以r为参数:

复制代码
p[z_, r_] := z^3 + (r - 1) z - r;
roots[r_] := z /. Solve[p[z, r] == 0, z];

此多项式的根为:

尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式的。此时的Newton-Raphson映射为:

此时,可以编写带有参数r的收敛速度计数函数:

复制代码
NewNewtonCounter = 
  Compile[{{z, _Complex}, {r, _Real}, {otherroot, _Complex}},
   Module[{counter = 0, zold = N[z] + 1, znew = N[z]},
    If[Abs[znew] < 10^(-9), znew = 10^(-9) + 0.0 I,
     znew = znew];
    For[counter = 0,
     (Abs[zold - znew] > 10^(-6)) && (counter < 85), counter++,
     (zold = znew; znew = (r + 2*zold^3)/(-1 + r + 3*zold^2))];
    Which[Abs[znew - 1] < 10^(-4), counter,
     Abs[znew - otherroot] < 10^(-4), 85 + counter,
     Abs[znew - Conjugate[otherroot]] < 10^(-4), 170 + counter,
     True, 255
     ]
    ]
   ];
 
   (*返回给定区域中的每个点相应的收敛计数*)  
 NewNewtonArray[r_, {{remin_, remax_}, {immin_, immax_}}, steps_] :=
 Module[{croot = -N[(1 + Sqrt[1 - 4 r])/2]},
  Table[NewNewtonCounter[x + y I, r, croot],
   {y, immin, immax, (immax - immin)/steps},
   {x, remin, remax, (remax - remin)/steps}
   ]
  ]

region = NewNewtonArray[2, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]
复制代码
region = NewNewtonArray[0.05, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]
相关推荐
YouQian77228 分钟前
Traffic Lights set的使用
算法
go54631584652 小时前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法
aramae2 小时前
大话数据结构之<队列>
c语言·开发语言·数据结构·算法
大锦终2 小时前
【算法】前缀和经典例题
算法·leetcode
想变成树袋熊3 小时前
【自用】NLP算法面经(6)
人工智能·算法·自然语言处理
cccc来财3 小时前
Java实现大根堆与小根堆详解
数据结构·算法·leetcode
Coovally AI模型快速验证4 小时前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
墨尘游子4 小时前
目标导向的强化学习:问题定义与 HER 算法详解—强化学习(19)
人工智能·python·算法
恣艺4 小时前
LeetCode 854:相似度为 K 的字符串
android·算法·leetcode
予早4 小时前
《代码随想录》刷题记录
算法