考察一般的三次多项式,以r为参数:
p[z_, r_] := z^3 + (r - 1) z - r;
roots[r_] := z /. Solve[p[z, r] == 0, z];
此多项式的根为:

尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式的。此时的Newton-Raphson映射为:

此时,可以编写带有参数r的收敛速度计数函数:
NewNewtonCounter =
Compile[{{z, _Complex}, {r, _Real}, {otherroot, _Complex}},
Module[{counter = 0, zold = N[z] + 1, znew = N[z]},
If[Abs[znew] < 10^(-9), znew = 10^(-9) + 0.0 I,
znew = znew];
For[counter = 0,
(Abs[zold - znew] > 10^(-6)) && (counter < 85), counter++,
(zold = znew; znew = (r + 2*zold^3)/(-1 + r + 3*zold^2))];
Which[Abs[znew - 1] < 10^(-4), counter,
Abs[znew - otherroot] < 10^(-4), 85 + counter,
Abs[znew - Conjugate[otherroot]] < 10^(-4), 170 + counter,
True, 255
]
]
];
(*返回给定区域中的每个点相应的收敛计数*)
NewNewtonArray[r_, {{remin_, remax_}, {immin_, immax_}}, steps_] :=
Module[{croot = -N[(1 + Sqrt[1 - 4 r])/2]},
Table[NewNewtonCounter[x + y I, r, croot],
{y, immin, immax, (immax - immin)/steps},
{x, remin, remax, (remax - remin)/steps}
]
]
region = NewNewtonArray[2, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]

region = NewNewtonArray[0.05, {{-2, 2}, {-2, 2}}, 1000];
NewtonPlot1[{{-2, 2}, {-2, 2}}, region, NewtonColorRGB]
