Flink的流、批处理

Flink的数据流处理,是持续流模型,数据不会落地,上游和下游的Task同时启动,等待数据的到达,Flink的批处理还是用的MapReduce计算模型,先处理map端,再执行reduce端。

flink的流处理(STREAMING):

是持续流模型,上游和下游的task任务同时启动,持续等待数据的到达,可以处理无界流和有界流,因为数据是一条条进行处理的,但是处理有界流的时候,打印出来的结果会显示多个(最终结果)
比如文本每行都有java,一共有java20,但是会打印java 8 ,java 10,java 20,显示多个最终结果

flink的批处理(BATCH):

底层还是MapReduce的计算模型,先处理map端,再处理reduce端,只能处理有界流
不能处理无界流, 因为执行的方式不同,MR不可能持续等待数据的到达,而是一次性批量的处理数据

代码展示如下:

java 复制代码
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

//TODO:无界流:程序开始之后,数据量是不确定的,没有边界,程序一直持续等待数据的到达
//     有界流:就是指数据量是确定的,比如一个文件,是知道具体的大小的

//todo:flink的流处理(STREAMING):是持续流模型,上游和下游的task任务同时启动,持续等待数据的到达,
// 可以处理无界流和有界流,因为数据是一条条进行处理的,但是处理有界流的时候,打印出来的结果会显示多个(最终结果)
// 比如文本每行都有java,一共有java20,但是会打印java 8 ,java 10,java 20,显示多个最终结果

//todo:flink的批处理(BATCH):底层还是MapReduce的计算模型,先处理map端,再处理reduce端,只能处理有界流
// 不能处理无界流, 因为执行的方式不同,MR不可能持续等待数据的到达,而是一次性批量的处理数据



public class flinkTest {
    public static void main(String[] args) throws Exception {
        //创建flink环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并行度
        env.setParallelism(2);
        //数据从上游发送到下游的缓存时间,默认也是200ms延迟
        env.setBufferTimeout(200);
        
        //数据读取,无界流
        //nc -lk 8888
        DataStreamSource<String> linesDSN = env.socketTextStream("master", 8888);
        linesDSN.print();

//        //数据读取,有界流,N是no代表无界,H是have代表有界
//           //设置为批处理的方式
//         env.setRuntimeMode(RuntimeExecutionMode.STREAMING);
//        DataStream<String> linesDSH = env.readTextFile("ScalaTest/src/main/java/data/score.txt");
//        linesDSH.print();

        //启动flink,execute会触发任务调度
        env.execute("w");


    }
}
相关推荐
AZDNA3 分钟前
搭建医疗行业AI知识库:提升信息管理与服务效能
大数据·人工智能
time never ceases9 分钟前
Elasticsearch安装和数据迁移
大数据·数据库·elasticsearch·es
袖清暮雨42 分钟前
5_SparkGraphX讲解
大数据·算法·spark
程序员shen1616111 小时前
注意⚠️:矩阵系统源码开发/SaaS矩阵系统开源/抖音矩阵开发优势和方向
java·大数据·数据库·python·php
百家方案1 小时前
「下载」智慧园区及重点区域安全防范解决方案:框架统一规划,建设集成管理平台
大数据·人工智能·安全·智慧园区·数智化园区
小刘鸭!2 小时前
Flink窗口window详解(分类、生命周期、窗口分配器、窗口函数、触发器)
大数据·flink
出发行进3 小时前
Hive其九,排名函数,练习和自定义函数
大数据·数据仓库·hive·hadoop·数据分析
szxinmai主板定制专家3 小时前
【国产NI替代】基于全国产FPGA的16振动+2转速+8路IO口输入输出(24bits)256k采样率,高精度终端采集板卡
大数据·人工智能·fpga开发
喵~来学编程啦4 小时前
【数据科学导论】第四章·特征工程与探索性分析
大数据·大数据入门·人工智能入门
SelectDB技术团队6 小时前
一文了解多云原生的现代化实时数仓 SelectDB Cloud
大数据·数据库·数据仓库·云原生·云计算