Flink的流、批处理

Flink的数据流处理,是持续流模型,数据不会落地,上游和下游的Task同时启动,等待数据的到达,Flink的批处理还是用的MapReduce计算模型,先处理map端,再执行reduce端。

flink的流处理(STREAMING):

是持续流模型,上游和下游的task任务同时启动,持续等待数据的到达,可以处理无界流和有界流,因为数据是一条条进行处理的,但是处理有界流的时候,打印出来的结果会显示多个(最终结果)
比如文本每行都有java,一共有java20,但是会打印java 8 ,java 10,java 20,显示多个最终结果

flink的批处理(BATCH):

底层还是MapReduce的计算模型,先处理map端,再处理reduce端,只能处理有界流
不能处理无界流, 因为执行的方式不同,MR不可能持续等待数据的到达,而是一次性批量的处理数据

代码展示如下:

java 复制代码
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

//TODO:无界流:程序开始之后,数据量是不确定的,没有边界,程序一直持续等待数据的到达
//     有界流:就是指数据量是确定的,比如一个文件,是知道具体的大小的

//todo:flink的流处理(STREAMING):是持续流模型,上游和下游的task任务同时启动,持续等待数据的到达,
// 可以处理无界流和有界流,因为数据是一条条进行处理的,但是处理有界流的时候,打印出来的结果会显示多个(最终结果)
// 比如文本每行都有java,一共有java20,但是会打印java 8 ,java 10,java 20,显示多个最终结果

//todo:flink的批处理(BATCH):底层还是MapReduce的计算模型,先处理map端,再处理reduce端,只能处理有界流
// 不能处理无界流, 因为执行的方式不同,MR不可能持续等待数据的到达,而是一次性批量的处理数据



public class flinkTest {
    public static void main(String[] args) throws Exception {
        //创建flink环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并行度
        env.setParallelism(2);
        //数据从上游发送到下游的缓存时间,默认也是200ms延迟
        env.setBufferTimeout(200);
        
        //数据读取,无界流
        //nc -lk 8888
        DataStreamSource<String> linesDSN = env.socketTextStream("master", 8888);
        linesDSN.print();

//        //数据读取,有界流,N是no代表无界,H是have代表有界
//           //设置为批处理的方式
//         env.setRuntimeMode(RuntimeExecutionMode.STREAMING);
//        DataStream<String> linesDSH = env.readTextFile("ScalaTest/src/main/java/data/score.txt");
//        linesDSH.print();

        //启动flink,execute会触发任务调度
        env.execute("w");


    }
}
相关推荐
树莓集团3 分钟前
以数字产业园区规划为笔,绘智慧城市新篇章
大数据·人工智能·科技·物联网·智慧城市·媒体
阿里云大数据AI技术1 小时前
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
大数据·架构·spark·apache
青云交1 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-2))(11/30)
大数据·impala·机器学习融合·技术剖析·金融案例·多行业应用·性能改善
天冬忘忧4 小时前
Spark 共享变量:广播变量与累加器解析
大数据·python·spark
电子手信5 小时前
AI知识库在行业应用中的未来趋势与案例分析
大数据·人工智能·自然语言处理·数据挖掘
zmd-zk5 小时前
hive中windows子句的使用
大数据·数据仓库·hive·hadoop·windows·分布式·big data
Natural_yz13 小时前
大数据学习09之Hive基础
大数据·hive·学习
Natural_yz13 小时前
大数据学习10之Hive高级
大数据·hive·学习
AI服务老曹13 小时前
建立更及时、更有效的安全生产优化提升策略的智慧油站开源了
大数据·人工智能·物联网·开源·音视频
Mephisto.java14 小时前
【大数据学习 | HBASE高级】storeFile文件的合并
大数据·sql·oracle·json·hbase·database