Spark中的shuffle过程详细

一、Spark中哪些算子会产生Shuffle

全局分组:reduceByKey,groupByKey

全局排序:sortBy,sortByKey

增大分区:repartition,coalese

groupByKey sortByKey sortBy reduceByKey repartition

coalesce(根据情况) join / fullOuterJoin / leftOuterJoin / rightOuterJoin

二、Spark中有哪些shuffle分类

Hash Based Shuffle (老的) Sort Based Shuffle 新的shuffle工具中包含Tungsten-Sort Based Shuffle

1、Hash Based Shuffle

没有排序,只有分区,每个Task按照ReduceTask个数生成【M*R】,简单数据量比较小,性能就比较高,但是:小文件非常多,数据量比较大性能非常差

2、Hash Based Shuffle 优化后,File Consolidation机制

没有排序,只有分区,每个Executor按照ReducTask个数生成多个文件:Executor*R

3、Sort Based Shuffle 目前是最新的

分为两个

Shuffle Write:类似于mr中map端的shuffle,但是Spark的Shuffle Write有3种,会根据情况自动判断选择哪种Shuffle Write

Shuffle Read:类似与mr种的reduce端shuffle,但是Spark的Shuffle Read功能由算子决定,不同算子经过的过程不一样

SortShuffleWrite:普通 Sort Shuffle Write

排序,生成一个整体基于分区和分区内部有序的文件和一个索引文件,有序排序,先生成多个小文件,再生成整体有序大文件,每个Task生成2个文件,数据文件和索引文件,Sort Shuffle Write过程与MapReduce的Map端shuffle基本一致

BypassMergeSortShuffleWriter:

类似与序列化后的Hash Based Shuffle,先每个分区生成一个文件,最后合并为一个大文件,分区内部不排序,分区数小于200,并且没有map端的聚合操作,适用于数据量小的数据,不在内存中排序

UnsafeShuffleWriter

钨丝计划方案,使用UnSafe API操作序列化数据,使用压缩指针存储元数据,溢写合并使用fastMerge提升效率,Map端没有聚合操作、序列化方式需要支持重定位,Partition个数不能超过2^24-1个

什么时候下使用ShuffleWriter

ShuffleWriter的实现方式

BypassMergeSortShuffleWriter

使用这种shuffle writer的条件是,没有map端的聚合操作,分区数小于参数:spark.shuffle.sort.bypassMergeThreshold,默认是200

UnsafeShuffleWriter

使用这种shuffle writer的条件是,序列化工具类支持对象的重定位,不需要在map端进行聚合操作,分区数不能大于:PackedRecordPointer.MAXIMUM_PARTITION_ID + 1

SortShuffleWriter

若以上两种shuffle writer都不能选择,则使用该shuffle writer类。

这也是相对比较常用的一种shuffle writer。

Shuffle Read:类似于MapReduce中的Reduce端shuffle

Reduce端的shuffle过程一定会经过合并排序、分组,不需要排序,依旧会给结果进行排序

相关推荐
格子先生Lab10 分钟前
Elasticsearch 入门教学:从零开始掌握分布式搜索引擎
分布式·elasticsearch·搜索引擎
shuxunAPI14 分钟前
什么是车架号VIN查询API接口?
大数据·数据库·云计算·api
信徒_1 小时前
Elasticsearch 提升查询精度
大数据·elasticsearch·jenkins
kngines1 小时前
【实战ES】实战 Elasticsearch:快速上手与深度实践-7.1.1Spark Streaming实时写入ES
大数据·elasticsearch·搜索引擎
m0_748257461 小时前
Python大数据可视化:基于spark的短视频推荐系统的设计与实现_django+spider
python·spark·django
格子先生Lab1 小时前
通过 Kibana 操作 Elasticsearch:从入门到实践
大数据·elasticsearch·搜索引擎
昨天今天明天好多天1 小时前
【Hadoop】
大数据·hadoop·分布式
kngines1 小时前
【实战ES】实战 Elasticsearch:快速上手与深度实践-7.1.2Flink CDC同步MySQL数据
大数据·mysql·elasticsearch·搜索引擎
m0_748246612 小时前
Python大数据可视化:基于大数据技术的共享单车数据分析与辅助管理系统_flask+hadoop+spider
大数据·python·信息可视化
隔着天花板看星星2 小时前
Flink-DataStreamAPI-执行模式
大数据·分布式·flink