大模型分布式训练并行技术(四)张量并行

引言

在Transformer架构里,有两块主要的计算量较大的部分,一是Self-Attention,二是MLP。在前面的文章中,我们已经介绍了模型并行和数据并行,本文将介绍张量并行,这是一种更加细粒度的并行方式,可以进一步提高模型的训练效率。

张量并行使用了矩阵乘法可以并行计算的特性,将模型的参数划分为多个部分,每个部分在不同的设备上进行计算,最后将结果进行汇总。下面,我们分别看FFN和Self-Attention的张量并行实现。

MLP

MLP的主要构建块都是完全连接的 nn.Linear,后跟非线性激活 GeLU。

按照 Megatron[2] 的论文符号,我们可以将其点积部分写为 Y = GeLU(XA),其中 X 和 Y 是输入和输出向量,A 是权重矩阵。

如果我们以矩阵形式查看计算,很容易看出矩阵乘法如何在多个 GPU 之间拆分:

如果我们将权重矩阵 A 按列拆分到 N 个 GPU 上,并行执行矩阵乘法 XA_1 到 XA_n,那么我们将得到 N 个输出向量 Y_1、Y_2、...、Y_n,这些向量可以独立输入到 GeLU 中:

利用这一原理,我们可以更新任意深度的 MLP,而无需 GPU 之间进行任何同步,直到最后,我们才需要重建输出向量。

Megatron-LM 论文作者为此提供了一个有用的例子:

Self-Attention

Self-Attention 的张量并行更简单,因为self-attention天然的是多头注意力机制,可以将每个头的计算分配到不同的 GPU 上。

在上图中,我们可以用2个GPU并行的计算self-attention,其中每个GPU计算一个头的注意力机制。那原则上,有几个头就可以用几个GPU并行计算。

特别注意事项:TP 需要非常快的网络,因此不建议跨多个节点进行 TP。实际上,如果一个节点有 4 个 GPU,则最高 TP 度为 4。如果你需要 8 的 TP 度,则需要使用至少有 8 个 GPU 的节点。

下一篇我们看看混合并行。

参考

1\] [Model Parallelism](https://link.juejin.cn?target=https%3A%2F%2Fhuggingface.co%2Fdocs%2Ftransformers%2Fv4.15.0%2Fen%2Fparallelism "https://huggingface.co/docs/transformers/v4.15.0/en/parallelism") \[2\] [Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://link.juejin.cn?target=https%3A%2F%2Farxiv.org%2Fabs%2F2104.04473 "https://arxiv.org/abs/2104.04473") ## 欢迎关注我的GitHub和微信公众号,来不及解释了,快上船! [GitHub: LLMForEverybody](https://link.juejin.cn?target=https%3A%2F%2Fgithub.com%2Fluhengshiwo%2FLLMForEverybody "https://github.com/luhengshiwo/LLMForEverybody") 仓库上有原始的Markdown文件,完全开源,欢迎大家Star和Fork!

相关推荐
無森~1 小时前
HBase优化面试题
java·面试·hbase
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-02-04)
开源·大模型·llm·github·ai教程
GISer_Jing4 小时前
构建高性能Markdown引擎开发计划
前端·aigc·ai编程
多恩Stone5 小时前
【3DV 进阶-11】Trellis.2 数据处理与训练流程图
人工智能·pytorch·python·算法·3d·aigc·流程图
寻道码路5 小时前
【MCP探索实践】Google GenAI Toolbox:Google开源的企业级AI数据库中间件、5分钟搞定LLM-SQL安全互联
数据库·人工智能·sql·开源·aigc
gr17855 小时前
通过dify文件上传能力,解决较大文本与LLM实时交互问题
python·llm·aigc·dify
fanstuck6 小时前
从 0 到 1 构建企业智能体平台:openJiuwen 架构解析与智能客服工作流实战
大数据·人工智能·算法·架构·aigc
生命不息战斗不止(王子晗)7 小时前
2026面试大纲 - java数据结构与集合专题
java·数据结构·面试
阿杰学AI7 小时前
AI核心知识83——大语言模型之 AI伦理审查员(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·安全性测试·ai伦理审查员
南风知我意9577 小时前
【前端面试4】框架以及TS
前端·面试·职场和发展