一、分布式锁
我们先来看一下本地锁
在并发编程中,我们通过锁,来避免由于竞争而造成的数据不一致问题。通常,我们以 synchronized 、Lock 来使用它(单机情况)
来看这段代码
java
@Autowired
RedisTemplate<String,String> redisTemplate;
String maotai = "maotai20210321001";//茅台商品编号
@PostConstruct
public void init(){
//此处模拟向缓存中存入商品库存操作
redisTemplate.opsForValue().set(maotai,"100");
}
@GetMapping("/get/maotai2")
public String seckillMaotai2() {
synchronized (this) {
Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai));
// 1 //如果还有库存
if (count > 0) {
//抢到了茅台,库存减一
redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
//后续操作 do something
log.info("我抢到茅台了!");
return "ok";
}else {
return "no";
}
}
}
- 现象:本地锁在多节点下失效(集群/分布式)
- 原因:本地锁它只能锁住本地JVM进程中的多个线程,对于多个JVM进程的不同线程间是锁不住的
- 解决:分布式锁(在分布式环境下提供锁服务,并且达到本地锁的效果)
那么,到底什么是分布式锁呢?
- 当在分布式架构下,数据只有一份(或有限制),此时需要利用锁的技术控制某一时刻修改数据的进程数。
- 用一个状态值表示锁,对锁的占用和释放通过状态值来标识。
基于Redis实现分布式锁
锁的实现主要基于 redis 的 SETNX 命令:
大致流程:
-
- 使用 SETNX 命令获取锁,若返回0(key已存在,锁已存在)则获取失败,反之获取成功
-
- 执行业务逻辑
-
- 释放锁,使用 DEL 命令将锁数据删除
锁超时
仅仅使用这个流程,会出现什么问题吗?思考:如果程序在第2步执行出现异常退出或宕机,没有执行第3步释放锁,岂不就使得这个锁一直未释放,别的请求一直得不到这个锁,这就产生了死锁问题!这也就是分布式锁的锁超时特点。
如何解决?在抢到锁的时候,给这个锁加上一个过期时间,即使没有执行手动释放锁,也会在过期时间到了自动释放锁!
代码如下:
java
@GetMapping("/get/maotai3")
public String seckillMaotai3() {
//获取锁
Boolean islock = redisTemplate.opsForValue().setIfAbsent(lockey, "1");
if (islock) {
//设置锁的过期时间
redisTemplate.expire(lockey,5, TimeUnit.SECONDS);
try {
Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai)); // 1
//如果还有库存
if (count > 0) {
//抢到了茅台,库存减一
redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
//后续操作 do something
log.info("我抢到茅台了!");
return "ok";
}else {
return "no";
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//释放锁
redisTemplate.delete(lockey);
}
}
return "dont get lock";
}
原子性操作
在以上代码中,setnx和expire的操作是分开执行的,假设此时,setnx执行完毕,程序异常退出或宕机了,那就无法设置好过期时间,这样也会导致锁一直得不到释放
究其原因,这两步是非原子性操作(解决:2.6以前可用使用lua脚本,2.6以后可用set命令),使用lua脚本把这两个命令变成一气呵成的操作,确保都同时执行成功。
java
@GetMapping("/get/maotai4")
public String seckillMaotai4() {
//获取锁
String locklua ="" +
"if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then redis.call('expire',KEYS[1],ARGV[2]) ; return true " +
"else return false " +
"end";
Boolean islock = redisTemplate.execute(new RedisCallback<Boolean>() {
@Override
public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
Boolean eval = redisConnection.eval(
locklua.getBytes(),
ReturnType.BOOLEAN,
1,
lockey.getBytes(),
requestid.getBytes(),
"5".getBytes()
);
return eval;
}
});
if (islock) {
try {
Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai)); // 1
//如果还有库存
if (count > 0) {
//抢到了茅台,库存减一
redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
//后续操作 do something
log.info("我抢到茅台了!");
return "ok";
}else {
return "no";
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//释放锁
redisTemplate.delete(lockey);
}
}
return "dont get lock";
}
错误解锁
思考以上代码:假设设置的超时时间小于业务执行时间,导致业务代码没有执行完,锁就被释放了,这时候其他请求就能进到这个锁,操作一些共享变量导致线程安全问题
解决方案:在setnx时,将value设置成一个唯一标识,解锁的时候,要进行value的匹配,匹配上了才能解锁
java
@GetMapping("/get/maotai4")
public String seckillMaotai4() {
String requestid = UUID.randomUUID().toString() + Thread.currentThread().getId();
/*String locklua ="" +
"if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then redis.call('expire',KEYS[1],ARGV[2]) ; return true " +
"else return false " +
"end";
Boolean islock = redisTemplate.execute(new RedisCallback<Boolean>() {
@Override
public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
Boolean eval = redisConnection.eval(
locklua.getBytes(),
ReturnType.BOOLEAN,
1,
lockey.getBytes(),
requestid.getBytes(),
"5".getBytes()
);
return eval;
}
});*/
//获取锁
Boolean islock = redisTemplate.opsForValue().setIfAbsent(lockey,requestid,5,TimeUnit.SECONDS);
if (islock) {
try {
Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai)); // 1
//如果还有库存
if (count > 0) {
//抢到了茅台,库存减一
redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
//后续操作 do something
log.info("我抢到茅台了!");
return "ok";
}else {
return "no";
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//释放锁
//判断是自己的锁才能去释放 这种操作不是原子性的
/*String id = redisTemplate.opsForValue().get(lockey);
if (id !=null && id.equals(requestid)) {
redisTemplate.delete(lockey);
}*/
String unlocklua = "" +
"if redis.call('get',KEYS[1]) == ARGV[1] then redis.call('del',KEYS[1]) ; return true " +
"else return false " +
"end";
redisTemplate.execute(new RedisCallback<Boolean>() {
@Override
public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
Boolean eval = redisConnection.eval(
unlocklua.getBytes(),
ReturnType.BOOLEAN,
1,
lockey.getBytes(),
requestid.getBytes()
);
return eval;
}
});
}
}
return "dont get lock";
}
锁续期
思考上面代码:在下图里面,只是解决了业务代码执行完,释放锁只能释放自己的锁,但是,当锁过期了,其他请求不也一样的进到了锁里面操作共享变量吗?究其原因是锁的过期时间小于业务代码执行时间,那解决办法自然就是把这个时间延长呗
那这个时间延长到底如何做?
给拿到锁的线程创建一个守护线程(看门狗),守护线程 定时/延迟(如每隔5s检查业务是否执行完毕) 判断拿到锁的线程是否还继续持有锁,如果持有则为其续期
java
//模拟一下守护线程为其续期
ScheduledExecutorService executorService;//创建守护线程池
ConcurrentSkipListSet<String> set = new ConcurrentSkipListSet<String>();//队列
@PostConstruct
public void init2(){
executorService = Executors.newScheduledThreadPool(1);
//编写续期的lua
String expirrenew = "" +
"if redis.call('get',KEYS[1]) == ARGV[1] then redis.call('expire',KEYS[1],ARGV[2]) ; return true " +
"else return false " +
"end";
executorService.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
Iterator<String> iterator = set.iterator();
while (iterator.hasNext()) {
String rquestid = iterator.next();
redisTemplate.execute(new RedisCallback<Boolean>() {
@Override
public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
Boolean eval = false;
try {
eval = redisConnection.eval(
expirrenew.getBytes(),
ReturnType.BOOLEAN,
1,
lockey.getBytes(),
rquestid.getBytes(),
"5".getBytes()
);
} catch (Exception e) {
log.error("锁续期失败,{}",e.getMessage());
}
return eval;
}
});
}
}
},0,1,TimeUnit.SECONDS);
}
@GetMapping("/get/maotai5")
public String seckillMaotai5() {
String requestid = UUID.randomUUID().toString() + Thread.currentThread().getId();
//获取锁
Boolean islock = redisTemplate.opsForValue().setIfAbsent(lockey,requestid,5,TimeUnit.SECONDS);
if (islock) {
//获取锁成功后让守护线程为其续期
set.add(requestid);
try {
Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai)); // 1
//如果还有库存
if (count > 0) {
//抢到了茅台,库存减一
redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
//后续操作 do something
//seckillMaotai5();
//模拟业务超时
TimeUnit.SECONDS.sleep(10);
log.info("我抢到茅台了!");
return "ok";
}else {
return "no";
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//解除锁续期
set.remove(requestid);
//释放锁
String unlocklua = "" +
"if redis.call('get',KEYS[1]) == ARGV[1] then redis.call('del',KEYS[1]) ; return true " +
"else return false " +
"end";
redisTemplate.execute(new RedisCallback<Boolean>() {
@Override
public Boolean doInRedis(RedisConnection redisConnection) throws DataAccessException {
Boolean eval = redisConnection.eval(
unlocklua.getBytes(),
ReturnType.BOOLEAN,
1,
lockey.getBytes(),
requestid.getBytes()
);
return eval;
}
});
}
}
return "dont get lock";
}
锁的可重入
思考一个问题,如果在一段代码里,我拿到了锁,这个代码要递归调用自己,就面临着再次获取锁,所以确保这次获取锁是成功的,这称为锁的可重入
可重入如何做呢?我们可不可以使得value是一个数值,在锁的内部每加一次锁就让数值加1,每释放一次锁就让数值减1。我们用hash的类型来做这个。基于这个思路我们看一下实现流程:
- 加锁:当一个客户端尝试获取锁时,首先检查锁是否已被其他客户端持有。如果没有,则设置锁并成为持有者;如果有,但持有者是自己,则增加计数器。
- 解锁:当一个客户端释放锁时,减少计数器。如果计数器变为0,则删除锁,这样其他客户端才能获取锁。
加锁的lua脚本:
python
"if (redis.call('exists', KEYS[1]) == 0) then " +
#设置锁key,field是唯一标识,value是重入次数
"redis.call('hset', KEYS[1], ARGV[2], 1); " +
#设置锁key的过期时间 默认30s
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
#如果锁key存在
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
#重入次数+1
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
#重置过期时间
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"return redis.call('pttl', KEYS[1]);"
解锁的lua脚本:
cpp
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; " +
"end;" +
// hash 中的field 不存在时直接返回,
"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
"local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
//重入次数-1后如果还大于0,延长过期时间
"if (counter > 0) then " +
"redis.call('pexpire', KEYS[1], ARGV[2]); " +
"return 0; " +
"else " +
//重入次数-1后如果归0,则删除key,并向redisson_lock__channel:{key}频道发布锁释放消息
"redis.call('del', KEYS[1]); " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; "+
"end; " +
"return nil;"
阻塞锁
我们要使得,每个请求来获取锁,如果锁已被占用,那么获取不到就等待锁的释放,直到获取到锁或者等待超时,常见方案有两种:
- 1:基于客户端轮询的方案
- 2:基于redis的发布/订阅方案
第2种方案:对于每个抢不到锁的进程,就订阅一个频道,当释放锁时,会向这个频道发布通知, 收到通知再进行重新抢锁
以上这些特性都是分布式锁应该满足的,那么自己写起来还是不太方便,Redisson就帮我们封装好了这一切,直接用
基于Redisson 实现分布式锁
Redisson的介绍
Redisson内置了一系列的分布式对象,分布式集合,分布式锁,分布式服务等诸多功能特性,是一款基于Redis实现,拥有一系列分布式系统功能特性的工具包,是实现分布式系统架构中缓存中间件的最佳选择。
使用步骤
XML
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.8.2</version>
</dependency>
java
@Bean
public RedissonClient redissonClient() {
Config config = new Config();
config.useSingleServer().setAddress("redis://"+host+":"+port);
return Redisson.create(config);
}
@Autowired
RedissonClient redissonClient;
@GetMapping("/get/maotai6")
public String seckillMaotai6() {
//要去获取锁
RLock lock = redissonClient.getLock(lockey);
lock.lock();
try {
Integer count = Integer.parseInt(redisTemplate.opsForValue().get(maotai)); // 1
//如果还有库存
if (count > 0) {
//抢到了茅台,库存减一
redisTemplate.opsForValue().set(maotai,String.valueOf(count-1));
//后续操作 do something
log.info("我抢到茅台了!");
return "ok";
}else {
return "no";
}
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();;
}
return "";
}
分布式锁特点
总结来说,设计一个完善的分布式锁,需要满足下面这些特点
- **互斥性:**不仅要在同一jvm进程下的不同线程间互斥,更要在不同jvm进程下的不同线程间互斥
- **锁超时:**支持锁的自动释放,防止死锁
- **正确,高效,高可用(解决错误解锁问题):**解铃还须系铃人(加锁和解锁必须是同一个线程),加锁和解锁操作一定要高效,提供锁的服务要具备容错性
- **可重入:**如果一个线程拿到了锁之后继续去获取锁还能获取到,我们称锁是可重入的(方法的递归调用)
- 阻塞/ **非阻塞:**如果获取不到直接返回视为非阻塞的,如果获取不到会等待锁的释放直到获取锁或者等待超时,视为阻塞的
- 公平/ **非公平:**按照请求的顺序获取锁视为公平的
前三点使我们必须要满足的,后两点是分布式锁的类型
二、布隆过滤器
我们先从一个场景说起
如果数据在缓存和数据库中都不存在,以id=-1为例,如果频繁的请求这个id的数据,会被频繁的访问数据库判断是否存在,直至请求多到把数据库压垮,这就是缓存穿透问题
那如何解决呢?我们就可以用布隆过滤器,布隆过滤器就可以实现在海量元素中,快速判断一个元素是否存在
布隆过滤器 本质上其实就是一个很长的二进制向量和一系列随机映射函数。专门用来检测集合中是否存在特定的元素
布隆过滤器的设计
BF是由一个长度为m比特的位数组(bit array) 与**k个哈希函数(hash function)**组成的数据结构。位数组均初始化为0,所有哈希函数都可以分别把输入数据尽量均匀地散列。
这个二进制位数据就由bitmap来实现
如果我们要映射一个值到布隆过滤器中,我们需要使用多个不同的哈希函数 生成**多个哈希值,**并对每个生成的哈希值指向的 bit 位,设置为1
当要插入一个元素时,将其数据分别输入k个哈希函数,产生k个哈希值。以哈希值作为位数组中的下标,将所有k个对应的比特置为1。
当要查询(即判断是否存在)一个元素时,同样将其数据输入哈希函数,然后检查对应的k个比特。如果有任意一个比特为0,表明该元素一定不在集合中。如果所有比特均为1,表明该集合有(较大的)可能性在集合中。为什么不是一定在集合中呢?因为一个比特被置为1有可能会受到其他元素的影响,这就是所谓"假阳性"(false positive)。相对地,"假阴性"(false negative)在BF中是绝不会出现的。
总结,对于BF的查询结果:
- 如果这些点有任何一个 0,则被检索元素一定不在;
- 如果都是 1,则被检索元素很可能在。
布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,因此误判的根源在于相同的 bit 位被多次映射且置 1。
误报率指的是你愿意接受的误报概率。误报是指布隆过滤器告诉你一个元素"可能"存在于集合中,但实际上并不在集合中。误报率越低,布隆过滤器所需的内存就越多。
在redis中使用BF
XML
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson-spring-boot-starter</artifactId>
<version>3.13.4</version>
</dependency>
java
public class RedissonBloomFilter {
public static void main(String[] args) {
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
config.useSingleServer().setPassword("1234");
//构造Redisson
RedissonClient redisson = Redisson.create(config);
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
//初始化布隆过滤器:预计元素为100000000L,偏差率为3%
bloomFilter.tryInit(100000000L,0.03);
//将号码10086插入到布隆过滤器中
bloomFilter.add("10086");
//判断下面号码是否在布隆过滤器中
//输出false
System.out.println(bloomFilter.contains("123456"));
//输出true
System.out.println(bloomFilter.contains("10086"));
}
}
解释一下bloomFilter.tryInit(100000000L,0.03);
- 100000000L 表示你期望这个布隆过滤器能够容纳大约一亿(100,000,000)个元素。
- 0.03 表示你希望这个布隆过滤器误判率不超过 3%。