从0开始深度学习(26)——汇聚层/池化层

池化层通过减少特征图的尺寸来降低计算量和参数数量,同时增加模型的平移不变性和鲁棒性。汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。

1 最大汇聚层、平均汇聚层

汇聚层和卷积核一样,是在输入图片上进行滑动计算,但是不同于卷积层的互相关运算,汇聚层的运算通常是计算汇聚窗口中所有元素的最大值或平均值。

1.1 最大汇聚层

上面操作的代码如下:

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
max_pooling=nn.MaxPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = max_pooling(X)

print(y.shape)
print(y)  

运行结果

1.2 平均汇聚层

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
avg_pooling=nn.AvgPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = avg_pooling(X)

print(y.shape)
print(y)  

运行结果

2 填充和步幅

torch自带的汇聚层函数也可以进行填充和步幅设置。

2.1 平均汇聚层

AvgPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0
  • count_include_pad: 是否在计算平均值时包括填充的零,默认值为 True。
  • divisor_override: 用于除法的自定义除数,默认值为 None,表示使用窗口大小作为除数。

2.2 最大池化层

MaxPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0。
  • dilation: 池化窗口的膨胀系数,默认值为 1。
  • return_indices: 是否返回最大值的索引,默认值为 False。
  • ceil_mode: 是否使用向上取整的方式计算输出尺寸,默认值为 False。

3 多个通道

在处理多通道输入数据时,汇聚层的输出通道数与输入通道数相同。

相关推荐
顾北121 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887821 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰1 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技2 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_2 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1513 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai3 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205313 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟3 小时前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战3 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源