从0开始深度学习(26)——汇聚层/池化层

池化层通过减少特征图的尺寸来降低计算量和参数数量,同时增加模型的平移不变性和鲁棒性。汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。

1 最大汇聚层、平均汇聚层

汇聚层和卷积核一样,是在输入图片上进行滑动计算,但是不同于卷积层的互相关运算,汇聚层的运算通常是计算汇聚窗口中所有元素的最大值或平均值。

1.1 最大汇聚层

上面操作的代码如下:

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
max_pooling=nn.MaxPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = max_pooling(X)

print(y.shape)
print(y)  

运行结果

1.2 平均汇聚层

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
avg_pooling=nn.AvgPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = avg_pooling(X)

print(y.shape)
print(y)  

运行结果

2 填充和步幅

torch自带的汇聚层函数也可以进行填充和步幅设置。

2.1 平均汇聚层

AvgPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0
  • count_include_pad: 是否在计算平均值时包括填充的零,默认值为 True。
  • divisor_override: 用于除法的自定义除数,默认值为 None,表示使用窗口大小作为除数。

2.2 最大池化层

MaxPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0。
  • dilation: 池化窗口的膨胀系数,默认值为 1。
  • return_indices: 是否返回最大值的索引,默认值为 False。
  • ceil_mode: 是否使用向上取整的方式计算输出尺寸,默认值为 False。

3 多个通道

在处理多通道输入数据时,汇聚层的输出通道数与输入通道数相同。

相关推荐
说私域4 小时前
私域流量圈层在新消费时代的机遇与挑战:兼论开源 AI 智能名片、2 + 1 链动模式、S2B2C 商城小程序的应用
人工智能·小程序
小森( ﹡ˆoˆ﹡ )4 小时前
词嵌入方法(Word Embedding)
人工智能·机器学习·自然语言处理·nlp·word·embedding
凡人的AI工具箱6 小时前
15分钟学 Go 第 49 天 :复杂项目开发
开发语言·人工智能·后端·算法·golang
python1566 小时前
基于驾驶员面部特征的疲劳检测系统
python·深度学习·目标检测
YRr YRr6 小时前
ubuntu20.04 解决Pytorch默认安装CPU版本的问题
人工智能·pytorch·python
UQI-LIUWJ6 小时前
论文笔记:TravelPlanner: A Benchmark for Real-World Planning with Language Agents
人工智能
Matrix_116 小时前
论文阅读:DualDn Dual-domain Denoising via Differentiable ISP
论文阅读·人工智能·计算摄影
小嗷犬6 小时前
【论文笔记】The Power of Scale for Parameter-Efficient Prompt Tuning
论文阅读·人工智能·大模型·微调·prompt
OAK中国_官方7 小时前
OAK相机:纯视觉SLAM在夜晚的应用
人工智能·机器学习·slam
kejijianwen7 小时前
F5全新报告揭示AI时代API安全面临严峻挑战
人工智能·安全