从0开始深度学习(26)——汇聚层/池化层

池化层通过减少特征图的尺寸来降低计算量和参数数量,同时增加模型的平移不变性和鲁棒性。汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。

1 最大汇聚层、平均汇聚层

汇聚层和卷积核一样,是在输入图片上进行滑动计算,但是不同于卷积层的互相关运算,汇聚层的运算通常是计算汇聚窗口中所有元素的最大值或平均值。

1.1 最大汇聚层

上面操作的代码如下:

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
max_pooling=nn.MaxPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = max_pooling(X)

print(y.shape)
print(y)  

运行结果

1.2 平均汇聚层

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
avg_pooling=nn.AvgPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = avg_pooling(X)

print(y.shape)
print(y)  

运行结果

2 填充和步幅

torch自带的汇聚层函数也可以进行填充和步幅设置。

2.1 平均汇聚层

AvgPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0
  • count_include_pad: 是否在计算平均值时包括填充的零,默认值为 True。
  • divisor_override: 用于除法的自定义除数,默认值为 None,表示使用窗口大小作为除数。

2.2 最大池化层

MaxPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0。
  • dilation: 池化窗口的膨胀系数,默认值为 1。
  • return_indices: 是否返回最大值的索引,默认值为 False。
  • ceil_mode: 是否使用向上取整的方式计算输出尺寸,默认值为 False。

3 多个通道

在处理多通道输入数据时,汇聚层的输出通道数与输入通道数相同。

相关推荐
unicrom_深圳市由你创科技16 分钟前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风19 分钟前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao24 分钟前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
九河云2 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云
IT空门:门主2 小时前
Spring AI的教程,持续更新......
java·人工智能·spring·spring ai
美狐美颜SDK开放平台2 小时前
美颜sdk是什么?如何将美颜SDK接入安卓/iOS直播平台?
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
AI营销资讯站2 小时前
AI营销内容生产:哪些平台支持全球多语言内容同步生产?
大数据·人工智能
飞哥数智坊2 小时前
AutoGLM 开源实测:一句话让 AI 帮我点个鸡排
人工智能·chatglm (智谱)
F_D_Z2 小时前
简明 | Yolo-v3结构理解摘要
深度学习·神经网络·yolo·计算机视觉·resnet
2022.11.7始学前端3 小时前
n8n第九节 使用LangChain与Gemini构建带对话记忆的AI助手
java·人工智能·n8n