从0开始深度学习(26)——汇聚层/池化层

池化层通过减少特征图的尺寸来降低计算量和参数数量,同时增加模型的平移不变性和鲁棒性。汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。

1 最大汇聚层、平均汇聚层

汇聚层和卷积核一样,是在输入图片上进行滑动计算,但是不同于卷积层的互相关运算,汇聚层的运算通常是计算汇聚窗口中所有元素的最大值或平均值。

1.1 最大汇聚层

上面操作的代码如下:

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
max_pooling=nn.MaxPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = max_pooling(X)

print(y.shape)
print(y)  

运行结果

1.2 平均汇聚层

python 复制代码
import torch
from torch import nn

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]])

# 设置一个2*2的最大池化层
avg_pooling=nn.AvgPool2d(kernel_size=2,stride=1)

# 执行卷积操作
y = avg_pooling(X)

print(y.shape)
print(y)  

运行结果

2 填充和步幅

torch自带的汇聚层函数也可以进行填充和步幅设置。

2.1 平均汇聚层

AvgPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0
  • count_include_pad: 是否在计算平均值时包括填充的零,默认值为 True。
  • divisor_override: 用于除法的自定义除数,默认值为 None,表示使用窗口大小作为除数。

2.2 最大池化层

MaxPool2d 的基本用法

参数说明

  • kernel_size: 池化窗口的大小,可以是一个整数或一个元组 (height, width)。
  • stride: 池化窗口的移动步幅,默认值为 kernel_size。
  • padding: 输入特征图的边缘填充大小,默认值为 0。
  • dilation: 池化窗口的膨胀系数,默认值为 1。
  • return_indices: 是否返回最大值的索引,默认值为 False。
  • ceil_mode: 是否使用向上取整的方式计算输出尺寸,默认值为 False。

3 多个通道

在处理多通道输入数据时,汇聚层的输出通道数与输入通道数相同。

相关推荐
AIGC大时代2 分钟前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新7 分钟前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
martian6651 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王2 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技5 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神6 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI6 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长7 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME8 小时前
知识库管理系统可扩展性深度测评
人工智能