P-tuning、Prompt-tuning和Prefix-tuning区别是什么?

概念

Prompt Tuning 是通过在输入序列前添加额外的 Token 来适配下游任务的方法。这些额外的 Token 是可训练的,而预训练语言模型的参数保持不变。
Prefix Tuning 是在每层 Transformer 结构的输入前添加一组可训练的 Token。这样,模型在处理输入序列时,每一层的输入都会包含这些额外的 Token,从而适配下游任务。
P-Tuning 是 Prompt Tuning 的一种变体,其核心思想是在特定位置插入可训练的 Token,使模型能够更好地理解下游任务的需求。P-Tuning 方法通过在输入序列中间插入额外的 Prompt Token,使模型在处理输入时能更好地捕捉上下文信息。

Prefix Tuning对比P-tuning

  • Prefix Tuning是将额外的embedding加在开头,看起来更像模仿Instruction指令,而P-tuning位置不固定;
  • Prefix Tuning通过在每个层都添加可训练参数,通过MLP初始化,而P-Tuning只在输入的时候加入embedding,并通过LSTM或MLP初始化。

Prefix Tuning对比Prompt-tuning

  • Prompt Tuning方式可以看做是Prefix Tuning的简化,只在输入层加入 prompt tokens,并不需要加入MLP进行调整(MLP处理prefix得到hidden state)来解决难训练的问题。

P-tuning和Prompt-tuning的区别

  • P-Tuning在输入的时候加入embedding,并通过LSTM或MLP初始化,且位置不固定,后续的版本中在每个层也都加了embedding,而prompt-tuning值在输入加上虚拟的token来学习,还不是自由参数形式。
相关推荐
风雨中的小七16 分钟前
解密prompt系列49. 回顾R1之前的思维链发展路线
prompt
alphaAIstack11 小时前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理
Watermelo61712 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink12 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
xiao5kou4chang6kai414 小时前
遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
目标检测·cnn·transformer·遥感影像
終不似少年遊*15 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
夏莉莉iy18 小时前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer
闻道且行之20 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
造夢先森20 小时前
Transformer & LLaMA
深度学习·transformer·llama
橙狮科技21 小时前
使用 GPTQ 进行 4 位 LLM 量化
人工智能·python·语言模型