P-tuning、Prompt-tuning和Prefix-tuning区别是什么?

概念

Prompt Tuning 是通过在输入序列前添加额外的 Token 来适配下游任务的方法。这些额外的 Token 是可训练的,而预训练语言模型的参数保持不变。
Prefix Tuning 是在每层 Transformer 结构的输入前添加一组可训练的 Token。这样,模型在处理输入序列时,每一层的输入都会包含这些额外的 Token,从而适配下游任务。
P-Tuning 是 Prompt Tuning 的一种变体,其核心思想是在特定位置插入可训练的 Token,使模型能够更好地理解下游任务的需求。P-Tuning 方法通过在输入序列中间插入额外的 Prompt Token,使模型在处理输入时能更好地捕捉上下文信息。

Prefix Tuning对比P-tuning

  • Prefix Tuning是将额外的embedding加在开头,看起来更像模仿Instruction指令,而P-tuning位置不固定;
  • Prefix Tuning通过在每个层都添加可训练参数,通过MLP初始化,而P-Tuning只在输入的时候加入embedding,并通过LSTM或MLP初始化。

Prefix Tuning对比Prompt-tuning

  • Prompt Tuning方式可以看做是Prefix Tuning的简化,只在输入层加入 prompt tokens,并不需要加入MLP进行调整(MLP处理prefix得到hidden state)来解决难训练的问题。

P-tuning和Prompt-tuning的区别

  • P-Tuning在输入的时候加入embedding,并通过LSTM或MLP初始化,且位置不固定,后续的版本中在每个层也都加了embedding,而prompt-tuning值在输入加上虚拟的token来学习,还不是自由参数形式。
相关推荐
sssammmm9 小时前
AI入门学习--如何写好prompt?
人工智能·学习·prompt
Hcoco_me11 小时前
【4】Transformers快速入门:自然语言模型 vs 统计语言模型
人工智能·语言模型·自然语言处理
BarbaraChow13 小时前
Seed-VC:零样本语音转换与扩散transformer
人工智能·深度学习·transformer
zl2914 小时前
论文学习22:UNETR: Transformers for 3D Medical Image Segmentation
深度学习·学习·transformer
TDengine (老段)17 小时前
TDengine IDMP 基本功能(3.数据三化处理)
大数据·数据库·物联网·ai·语言模型·时序数据库·tdengine
陈敬雷-充电了么-CEO兼CTO18 小时前
OpenAI开源大模型 GPT-OSS 开放权重语言模型解析:技术特性、部署应用及产业影响
人工智能·gpt·ai·语言模型·自然语言处理·chatgpt·大模型
Hcoco_me21 小时前
【8】Transformers快速入门:Decoder 分支和统计语言模型区别?
人工智能·语言模型·自然语言处理
_oP_i21 小时前
Model Context Protocol (MCP)标准化应用程序向大型语言模型 (LLM) 提供上下文协议
人工智能·语言模型·自然语言处理
PythonPioneer1 天前
如何使用AI大语言模型解决生活中的实际小事情?
人工智能·语言模型·生活
逸俊晨晖2 天前
香橙派 RK3588 部署千问大模型 Qwen2-VL-2B 推理视频
语言模型·音视频·rk3588·香橙派