SparkSql
结构化数据与非结构化数据
结构化数据就类似于excel表中的数据(统计的都是结构化的数据)一般都使用sparkSql处理结构化的数据
结构化的文件:JSON、CSV【以逗号分隔】、TSV【以制表符分隔】、parquet、orc
结构化的表:数据库中表的数据:MySQL、Oracle、Hive
我们在sparkcore中导入数据使用的是textFile,而在sparksql中怎么导入数据呢
使用的是DataFrame进行数据的导入
将一些结构化的数据进行sql查询,需要将数据变为表,是表就必须有表结构,表结构就是Schema。
一个经典的wordcount案例:
代码如下:(里面有sql和dsl两种写法)
python
import os
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
if __name__ == '__main__':
os.environ['JAVA_HOME'] = 'C:/Program Files/Java/jdk1.8.0_131'
# 配置Hadoop的路径,就是前面解压的那个路径
os.environ['HADOOP_HOME'] = r'D:\BigDate\05-Hadoop\software\hadoop-3.3.1'
# 配置base环境Python解析器的路径
os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe' # 配置base环境Python解析器的路径
os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'
# 创建spark对象
spark = SparkSession.builder.master("local[2]").appName("SparkSQL-wordcount案例").config(
"spark.sql.shuffle.partitions", 2).getOrCreate()
print(spark)
# 创建一个DataFrame对象,读取数据
df = spark.read.text("../../datas/wordcount/data.txt")
# 创建一个临时表,表名为 wordcount
df.createOrReplaceTempView("wordcount")
# 第一种写法,使用sparksql
spark.sql("""
with t as (
select word from wordcount lateral view explode(split(value," ")) wordtemp as word
),t2 as (
select trim(word) word from t where trim(word) != ""
)select word,count(1) countNum from t2 group by word order by countNum desc
""").show()
# 第二种写法,使用 dsl
df.select(F.explode(F.split("value"," ")).alias("word")) \
.where(" trim(word) != '' ").groupby("word").count().orderBy("count",ascending=False).show()
#这里的where(F.trim("word") != "") 还可以写成 where(" trim(word) != '' ")
# 还可以这样写
df.select(F.explode(F.split("value"," ")).alias("word")) \
.where(F.trim("word") != "").groupby(F.col("word")).agg(F.count(F.col("word")).alias("cou")).orderBy(F.col("cou"),ascending=False).show()
spark.stop()
以上的代码还可以使用with进行优化
补充:
with的作用: 我们在创建对象的时候,经常需要关闭(close、stop) 如果忘记关闭,太多对象的话就会影响性能,使用with自动帮我们关闭
什么时候可以使用with呢
源码中有 enter 和 exit 的时候就可以使用with进行优化
优化过后的代码: (此时就不需要在手动stop关闭了)
python
import os
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
if __name__ == '__main__':
os.environ['JAVA_HOME'] = 'C:/Program Files/Java/jdk1.8.0_131'
# 配置Hadoop的路径,就是前面解压的那个路径
os.environ['HADOOP_HOME'] = r'D:\BigDate\05-Hadoop\software\hadoop-3.3.1'
# 配置base环境Python解析器的路径
os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe' # 配置base环境Python解析器的路径
os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'
# 创建spark对象
with SparkSession.builder.master("local[2]").appName("SparkSQL-wordcount案例").config(
"spark.sql.shuffle.partitions", 2).getOrCreate() as spark:
# 创建一个DataFrame对象,读取数据
df = spark.read.text("../../datas/wordcount/data.txt")
# 创建一个临时表,表名为 wordcount
df.createOrReplaceTempView("wordcount")
# 第一种写法,使用sparksql
spark.sql("""
with t as (
select word from wordcount lateral view explode(split(value," ")) wordtemp as word
),t2 as (
select trim(word) word from t where trim(word) != ""
)select word,count(1) countNum from t2 group by word order by countNum desc
""").show()
# 第二种写法,使用 dsl
df.select(F.explode(F.split("value"," ")).alias("word")) \
.where(" trim(word) != '' ").groupby("word").count().orderBy("count",ascending=False).show()
#这里的where(F.trim("word") != "") 还可以写成 where(" trim(word) != '' ")
# 还可以这样写
df.select(F.explode(F.split("value"," ")).alias("word")) \
.where(F.trim("word") != "").groupby(F.col("word")).agg(F.count(F.col("word")).alias("cou")).orderBy(F.col("cou"),ascending=False).show()
一个案例:
需求:统计评分次数大于2000次的所有电影中平均评分最高的Top10,结果显示电影名称、电影平均评分、电影评分次数。
- 电影评分数据:datas/movie/ratings.dat【用户id、电影id、评分、评分时间】
数据如下:
python
1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
1::1197::3::978302268
1::1287::5::978302039
1::2804::5::978300719
1::594::4::978302268
1::919::4::978301368
1::595::5::978824268
- 电影信息数据:datas/movie/movies.dat【电影id、电影名称、分类】
python
1::Toy Story (1995)::Animation|Children's|Comedy
2::Jumanji (1995)::Adventure|Children's|Fantasy
3::Grumpier Old Men (1995)::Comedy|Romance
4::Waiting to Exhale (1995)::Comedy|Drama
5::Father of the Bride Part II (1995)::Comedy
6::Heat (1995)::Action|Crime|Thriller
7::Sabrina (1995)::Comedy|Romance
8::Tom and Huck (1995)::Adventure|Children's
9::Sudden Death (1995)::Action
首先,给定的数据不是我们所经常使用的格式化数据,所以需要先将数据进行格式化
可以使用RDD的算子将数据改为我们想要的格式化数据
也可以直接利用sql,将非格式化的数据修改为我们需要的格式的数据
写这个案例我们可以利用前面所学的 RDD 和 sparkSQL一起完成这个案例
使用RDD+SparkSQL
代码如下:
python
import os
import re
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
if __name__ == '__main__':
os.environ['JAVA_HOME'] = 'C:/Program Files/Java/jdk1.8.0_131'
# 配置Hadoop的路径,就是前面解压的那个路径
os.environ['HADOOP_HOME'] = r'D:\BigDate\05-Hadoop\software\hadoop-3.3.1'
# 配置base环境Python解析器的路径
os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe' # 配置base环境Python解析器的路径
os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'
# 创建spark对象
with SparkSession.builder.master("local[2]").appName("MovieTop10").config(
"spark.sql.shuffle.partitions", 2).getOrCreate() as spark:
print(spark)
rating_df = spark.sparkContext.textFile("../../datas/movie/ratings.dat").map(lambda line:re.split("::",line)) \
.filter(lambda item:len(item) == 4).map(lambda item:(item[0],item[1],item[2],item[3])) \
.toDF(["user_id","movie_id","score","score_time"]).createOrReplaceTempView("rating")
# spark.sql("""
# select * from rating
# """).show()
movie_df = spark.sparkContext.textFile("../../datas/movie/movies.dat") \
.map(lambda line:(line.split("::")[0],line.split("::")[1],line.split("::")[2])) \
.toDF(["movie_id", "movie_name", "movie_categry"]).createOrReplaceTempView("movie")
# spark.sql("""
# select * from movie
# """).show(truncate=False)
#统计评分次数大于2000次的所有电影中平均评分最高的Top10,结果显示电影名称、电影平均评分、电影评分次数
spark.sql("""
select m.movie_name,round(avg(r.score),2) avgRate,count(1) countNum from movie m join rating r on m.movie_id = r.movie_id
group by m.movie_name having countNum >2000 order by avgRate desc limit 10
""").show(truncate=False)
# 保留两位小数后,结果可能有重复的,想要获取重复排名也只算一位的可以使用排名函数,dense_rank()
spark.sql("""
with t as (
select m.movie_name,round(avg(r.score),2) avgRate,count(1) countNum from movie m join rating r on m.movie_id = r.movie_id
group by m.movie_name having countNum >2000
),t2 as (
select *,dense_rank() over(order by avgRate desc) paiming from t
) select * from t2 where paiming <= 10
""").show()
复习 排名函数:
1、row_number()
row_number从1开始,按照顺序,生成分组内记录的序列,row_number()的值不会存在重复,当排序的值相同时,按照表中记录的顺序进行排列
python
效果如下:
98 1
97 2
97 3
96 4
95 5
95 6
没有并列名次情况,顺序递增
2、rank()
生成数据项在分组中的排名,排名相等会在名次中留下空位
python
效果如下:
98 1
97 2
97 2
96 4
95 5
95 5
94 7
有并列名次情况,顺序跳跃递增
3、dense_rank()
生成数据项在分组中的排名,排名相等会在名次中不会留下空位
python
效果如下:
98 1
97 2
97 2
96 3
95 4
95 4
94 5
有并列名次情况,顺序递增
只使用 SparkSQL:
以上是 RDD + sparkSQL的写法, 还可以通过 sparkSQL的写法硬写出来
通过split()方法,根据非格式化数据的分隔符,将数据切成我们需要的DataFrame类型的数据
python
df1 = spark.read.text("../../datas/movie/movies.dat").createOrReplaceTempView("movie1")
df2 = spark.read.text("../../datas/movie/ratings.dat").createOrReplaceTempView("rating1")
#统计评分次数大于2000次的所有电影中平均评分最高的Top10,结果显示电影名称、电影平均评分、电影评分次数
spark.sql("""
with m1 as (
select split(value,"::")[0] movie_id,split(value,"::")[1] movie_name,split(value,"::")[2] movie_categary from movie1
),r1 as (
select split(value,"::")[0] user_id,split(value,"::")[1] movie_id,split(value,"::")[2] score,split(value,"::")[3] score_time from rating1
)select m1.movie_name,round(avg(r1.score),2) avgRote,count(1) countNum from m1 join r1 on m1.movie_id = r1.movie_id
group by m1.movie_name having countNum >2000 order by avgRote desc limit 10
""").show(truncate=False)
# 同样也可以写成排名函数
spark.sql("""
with m1 as (
select split(value,"::")[0] movie_id,split(value,"::")[1] movie_name,split(value,"::")[2] movie_categary from movie1
),r1 as (
select split(value,"::")[0] user_id,split(value,"::")[1] movie_id,split(value,"::")[2] score,split(value,"::")[3] score_time from rating1
),t as (
select m1.movie_name,round(avg(r1.score),2) avgRote,count(1) countNum from m1 join r1 on m1.movie_id = r1.movie_id
group by m1.movie_name having countNum >2000
),t2 as (
select *,dense_rank() over(order by avgRote desc) paiming from t
)select * from t2 where paiming <= 10
""").show(truncate=False)