通过scrapy和Django登录、爬取和持久化数据

使用 ScrapyDjango 实现登录、爬取和持久化数据的完整流程,可以通过以下步骤完成:

  1. 创建 Django 项目和数据库模型:定义一个存储爬取数据的数据库模型。
  2. 创建 Scrapy 项目:实现登录并抓取目标页面的数据。
  3. 整合 Scrapy 和 Django:在 Scrapy 中使用 Django 的模型保存爬取的数据到数据库。

问题背景

在将 Django 和 Scrapy 成功集成后,用户想要持久化爬取到的数据到数据库中。但是,存储后发现,部分元素丢失了。用户猜测自己可能遗漏了一些东西,但无法解决。

以下是用户的爬虫代码:

python 复制代码
from scrapy.http import FormRequest, Request
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector
from scrapy import log
from scrapy.contrib.loader import XPathItemLoader
from datacrowdscrapy.items import DatacrowdItem

class DatacrowdSpider(BaseSpider):
    name = 'datacrowd'
    start_urls = ['https://www.exemple.com/login']

    def parse(self, response):
        parsed = [FormRequest.from_response(
            response,
            formdata={
                'login': 'email@gmail.com',
                'password': 'password'
            },
            callback=self.after_login)]

        return parsed

    def after_login(self, response):
        # check login succeed before going on
        if "authentication failed" in response.body:
            self.log("Login failed", level=log.ERROR)
            return

        selector = HtmlXPathSelector(response)
        investmentsLinks = selector.select('//a[contains(@class, "myClass")]/@href').extract()
        for link in investmentsLinks:
            curDatacrowdItem = XPathItemLoader(item=DatacrowdItem(), response=response)
            curDatacrowdItem.add_value('url', link)
            curRequest = Request(url=link, callback=self.parse_investments, meta={'item': curDatacrowdItem})
            yield curRequest


    def parse_investments(self, response):
        selector = HtmlXPathSelector(response)
        curDatacrowdItem = response.meta['item']

        # Details
        details = selector.select('//td/div[contains(@class, "myClass")]/text()').extract()
        curDatacrowdItem.add_value('someVal', details[0].strip())
        /* ... */

        # Get nbInvestors
        investorLink = selector.select('//ul[contains(@id, "myId")]/li/@onclick').re(r'window.location.href=\'(http.+/data.+)\'')
        curRequest = Request(url=investorLink[0], callback=self.parse_investors, meta={'item': curDatacrowdItem})
        yield curRequest


        # Get last company details
        detailsLink = selector.select('//ul[contains(@id, "myData")]/li/@onclick').re(r'window.location.href=\'(http.+/company-details.+)\'')
        curRequest = Request(url=detailsLink[0], callback=self.parse_details, meta={'item': curDatacrowdItem})
        yield curRequest

    def parse_investors(self, response):
        selector = HtmlXPathSelector(response)
        curDatacrowdItem = response.meta['item']
        nbInvestors = len(selector.select('//ul/li[contains(@class, "myClass")]'))
        curDatacrowdItem.add_value('nbInvestors', nbInvestors)
        return curDatacrowdItem

    def parse_details(self, response):
        selector = HtmlXPathSelector(response)
        curDatacrowdItem = response.meta['item']

        # Company name
        name = selector.select('//div[contains(@class, "myClass")]/h2/text()').extract()
        curDatacrowdItem.add_value('name', name[0].strip())
        item = curDatacrowdItem.load_item()
        item.save() # Here I'm persisiting datas
        return item

用户收到的错误日志如下:

[datacrowd] ERROR: Spider must return Request, BaseItem or None, got 'XPathItemLoader' in <GET http://www.exemple.com/url/slug>

解决方案

用户犯的错误是,他正在返回一个 XPathItemLoader 对象,而不是一个 Item 对象。在 "after_login" 方法中,用户将一个 XPathItemLoader 对象添加到 meta 中,然后尝试在稍后返回它。正确的做法是使用 load_item 方法来返回 Item 对象。

要解决这个问题,用户可以将以下代码添加到 "after_login" 方法中:

python 复制代码
curRequest = Request(url=link, callback=self.parse_investments, meta={'item': curDatacrowdItem.load_item()})

另外,建议用户重命名变量,以避免类似的错误。

总结

这段代码展示了如何结合 ScrapyDjango 登录、抓取和持久化数据的基本流程。这个组合适用于需要在 Web 项目中自动抓取并存储数据的需求,如商品数据爬取。

相关推荐
数据小小爬虫5 分钟前
使用Java爬虫获取淘宝商品类目API返回值
java·开发语言
友大冰15 分钟前
Go 语言已立足主流,编程语言排行榜24 年 11 月
开发语言·后端·golang
lcz-200016 分钟前
IDEA一键部署SpringBoot项目到服务器
java·spring boot·intellij-idea
尘浮生17 分钟前
Java项目实战II基于微信小程序的原创音乐小程序(开发文档+数据库+源码)
java·开发语言·数据库·spring boot·微信小程序·小程序·maven
爱跑步的一个人21 分钟前
STL-常用排序算法
开发语言·c++·排序算法
蜜桃小阿雯28 分钟前
JAVA开源项目 微服务在线教育系统 计算机毕业设计
java·开发语言·spring boot·微服务·java-ee·开源·maven
花下的晚风28 分钟前
单元测试时报错找不到@SpringBootConfiguration
java·开发语言·单元测试
Elastic 中国社区官方博客34 分钟前
Elasticsearch 和 Kibana 8.16:Kibana 获得上下文和 BBQ 速度并节省开支!
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
晴天のVlog37 分钟前
Fastapi使用MongoDB作为数据库
数据库·python·mongodb·fastapi
爱编程— 的小李37 分钟前
结构体(c语言)
c语言·开发语言