三维测量与建模笔记 - 3 Python Opencv实现相机标定

复制代码
import cv2
import numpy as np
import glob
import matplotlib.pyplot as plt

cv2.__version__
#参考链接
#https://docs.opencv.org/3.4/dc/dbb/tutorial_py_calibration.html


#相关参数
#设置寻找亚像素角点的参数,采用的停止准则是最大循环次数30和最大误差容限0.001
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # 阈值
#棋盘格每行每列方块角点个数
w = 9
h = 6
#棋盘格方块边长(mm)
side = 10

#世界坐标下的棋盘格角点坐标如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w*h,3), np.float32)
objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2)
objp = objp*side  # 边长side(mm)

#保存图片中的角点
world_points = [] #世界坐标系
img_points = [] #相平面坐标系

#拍摄的棋盘格图像文件列表
images = glob.glob('./imgs/*.jpg')
print("Image Files:",images)


#读取所有图片,检测角点,拿到世界坐标和相平面坐标
i=0
for fname in images:

    img = cv2.imread(fname)
    # 获取画面中心点
    #获取图像的长宽
    h1, w1 = img.shape[0], img.shape[1]
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    u, v = img.shape[:2]
    # 找到棋盘格角点
    ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
    # 如果找到足够点对,将其存储起来
    if ret == True:
        print("i:", i)
        i = i+1
        # 在原角点的基础上寻找亚像素角点
        cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        #追加进入世界三维点和平面二维点中
        world_points.append(objp)
        img_points.append(corners)
        # 将角点在图像上显示
        cv2.drawChessboardCorners(img, (w,h), corners, ret)
        cv2.namedWindow('findCorners', cv2.WINDOW_NORMAL)
        cv2.resizeWindow('findCorners', 640, 480)
        cv2.imshow('findCorners',img)
        cv2.waitKey(1000)
cv2.destroyAllWindows()

#进行标定
ret, mtx, dist, rvecs, tvecs = \
    cv2.calibrateCamera(world_points, img_points, gray.shape[::-1], None, None)
print("Error:", ret)
print("Instrinsic Matrix:\n",mtx)      # 内参数矩阵
print("Distortion Coeff:\n", dist   )   # 畸变系数   distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print("Rotation Vectors:\n",rvecs)   # 旋转向量  # 外参数
print("Translation Vectors:\n",tvecs  )  # 平移向量  # 外参数

#使用去畸变参数
img = cv2.imread('./imgs/6.jpg')
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (u, v), 0, (u, v))
# 纠正畸变
dst1 = cv2.undistort(img, mtx, dist, None, newcameramtx)

mapx,mapy=cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w1,h1),5)
dst2=cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
# 裁剪图像,输出纠正畸变以后的图片
x, y, w1, h1 = roi
dst1 = dst1[y:y + h1, x:x + w1]

plt.figure(1, figsize=(8,6), dpi=100)
plt.imshow(img)

plt.figure(1, figsize=(8,6), dpi=100)
plt.imshow(dst1)

plt.figure(1, figsize=(8,6), dpi=100)
plt.imshow(dst2)

相关推荐
databook6 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar7 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户8356290780517 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_7 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机14 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机15 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机15 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机15 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i15 小时前
drf初步梳理
python·django
每日AI新事件15 小时前
python的异步函数
python